幾何学
図形、空間、測量などの幾何学に関する問題
このカテゴリーの問題
南北7本、東西6本の道がある。C地点は通れない。1区間の距離は南北、東西で等しい。 (1) O地点からA地点を通りP地点へ最短距離で行く道順の数を求める。 (2) O地点からB地点を通りP地点へ最短距...
最短経路組み合わせ道順場合の数
2025/7/3
図において、$x$の値を求める問題です。図には、三角形ABCの外側に点P, Q, Rがあり、それぞれ点C, A, Bから接線が引かれています。AR = $x$, AQ = 4, BR = 4, BP ...
接線三角形円外接長さ
2025/7/3
図において、AR:RB = 1:2, BQ:QA = 3:3 = 1:1, CP:PB = 2:3であるとき、CQ:QA = xを求める問題です。
チェバの定理比三角形
2025/7/3
(1) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェバの定理を用いてx (線分BPの長さ) を求める。 (2) 三角形ABCにおいて、線分AR、BP、CQが一点で交わるとき、チェ...
チェバの定理三角形線分比
2025/7/3
三角形ABCにおいて、点P, Q, Rがそれぞれ辺BC, CA, AB上にあり、線分AP, BQ, CRが一点で交わっているとき、チェバの定理を用いて $x$ を求めます。チェバの定理は、 $...
チェバの定理メネラウスの定理三角形比
2025/7/3
平行四辺形ABCDにおいて、辺BCの中点をE、辺CDの中点をFとする。対角線BDとAEの交点をP、対角線BDとAFの交点をQとする。このとき、線分PQとBDの長さの比 $PQ:BD$ を求めよ。
ベクトル平行四辺形線分の比
2025/7/3
$\angle A = 90^\circ$, $AB = 4$, $AC = 3$ である直角三角形 $ABC$ について、その重心を $G$ とするとき、$\triangle GBC$ の面積を求め...
三角形重心面積直角三角形
2025/7/3
三角形ABCにおいて、$AB=6$, $BC=5$, $CA=3$であり、内心をIとする。直線AIと辺BCの交点をDとする。以下の問いに答える。 (1) 線分BDの長さを求めよ。 (2) AI:IDを...
三角形内心角の二等分線比
2025/7/3
三角形ABCにおいて、角BACは$20^\circ + \beta$、角ACBは$30^\circ$、角ABCは$\alpha$です。また、点Oは三角形ABCの内部にあり、角OACは$\beta$、角...
三角形角度内角の和角の計算
2025/7/3
問題は、点Oが三角形ABCの外心であるとき、与えられた図に基づいて角 $\alpha$ と $\beta$ の値を求める問題です。3つの図それぞれについて、$\alpha$ と $\beta$ を求め...
外心三角形角度二等辺三角形角の計算
2025/7/3