男子4人と女子5人の合計9人のグループから4人を選ぶとき、男子2人、女子2人となる選び方は何通りあるか。

確率論・統計学組み合わせ場合の数確率
2025/7/6

1. 問題の内容

男子4人と女子5人の合計9人のグループから4人を選ぶとき、男子2人、女子2人となる選び方は何通りあるか。

2. 解き方の手順

まず、男子4人の中から2人を選ぶ組み合わせの数を計算します。これは組み合わせの公式を使って 4C2 {}_4C_2 で表されます。
4C2=4!2!(42)!=4!2!2!=4×32×1=6 {}_4C_2 = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6
次に、女子5人の中から2人を選ぶ組み合わせの数を計算します。これは組み合わせの公式を使って 5C2 {}_5C_2 で表されます。
5C2=5!2!(52)!=5!2!3!=5×42×1=10 {}_5C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
最後に、男子2人と女子2人を選ぶ組み合わせの総数は、それぞれの組み合わせの数を掛け合わせることで求められます。
6×10=60 6 \times 10 = 60

3. 最終的な答え

60通り

「確率論・統計学」の関連問題

1から15までの数字が書かれた15枚のカードから同時に2枚引くとき、(1) 2枚のカードの数字の和が偶数になる確率と、(2) 2枚のカードの数字の積が偶数になる確率を求める問題です。

確率組み合わせ偶数奇数
2025/7/13

1から8の数字が書かれた8個の玉があります。その中から2個の玉を選び箱Aに入れ、次に残りの玉から2個を選び箱Bに入れ、最後に残りの玉から2個を選び箱Cに入れます。 (1) 箱Aに入れる玉の選び方は全部...

組み合わせ場合の数確率
2025/7/13

区別できない2個のサイコロを投げて、出た目の和が10以上になる場合の数を求める問題です。

確率サイコロ場合の数組み合わせ
2025/7/13

4人が1回じゃんけんをするとき、手の出し方が全部で何通りあるか求める問題です。

確率組み合わせ場合の数じゃんけん
2025/7/13

ある競技は6試合を行い、3勝すれば勝ち抜きとなる。ただし、対戦相手は毎回異なり、引き分けはない。また、3勝した時点でそれ以降の試合は行わない。最初に1勝したとき、この競技を勝ち抜くための勝敗の順は何通...

確率組み合わせ場合の数条件付き確率
2025/7/13

9人を以下の方法で分ける場合の数をそれぞれ求めます。 (1) 部屋A, B, Cに3人ずつ入れる。 (2) 3人ずつの3組に分ける。 (3) 2人、2人、5人の3組に分ける。

組み合わせ場合の数順列二項係数
2025/7/13

無作為標本 $X_1, X_2, ..., X_n$ が与えられ、標本空間 $X$ 上の分布 $P_\theta, \theta \in \Theta$ に従うとします。$\Theta_0 (\neq...

仮説検定統計的推測帰無仮説対立仮説第1種の誤り
2025/7/13

母平均 $\mu$ が未知で、母分散が $\tau^2$ の正規母集団から無作為抽出された標本 $83, 84, 86, 95, 93, 96, 86, 91, 87, 90, 101, 76, 10...

統計信頼区間母平均標本平均正規分布
2025/7/13

9人を以下の3つの方法で分ける場合の数を求めます。 (1) 部屋A, B, Cに3人ずつ入れる。 (2) 3人ずつの3組に分ける。 (3) 2人, 2人, 5人の3組に分ける。

組み合わせ場合の数順列
2025/7/13

母平均が $\mu$、母分散が $\sigma^2$ である母集団からの無作為標本 $X_1, X_2, ..., X_n$ に対して、標本平均 $\bar{X} = \frac{1}{n} \sum...

標本平均期待値分散確率変数無作為標本
2025/7/13