この問題は、組み合わせの計算です。具体的には、${}_{10}C_4 \times {}_6C_3 \times {}_3C_2$ の値を計算します。

確率論・統計学組み合わせ二項係数場合の数
2025/7/6

1. 問題の内容

この問題は、組み合わせの計算です。具体的には、10C4×6C3×3C2{}_{10}C_4 \times {}_6C_3 \times {}_3C_2 の値を計算します。

2. 解き方の手順

組み合わせの公式は、nCr=n!r!(nr)!{}_nC_r = \frac{n!}{r!(n-r)!} です。
ここで、n!n!nn の階乗を表し、n!=n×(n1)×(n2)×...×2×1n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1 です。
まず、10C4{}_{10}C_4 を計算します。
10C4=10!4!(104)!=10!4!6!=10×9×8×74×3×2×1=10×3×7=210{}_{10}C_4 = \frac{10!}{4!(10-4)!} = \frac{10!}{4!6!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 10 \times 3 \times 7 = 210
次に、6C3{}_6C_3 を計算します。
6C3=6!3!(63)!=6!3!3!=6×5×43×2×1=5×4=20{}_6C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 5 \times 4 = 20
最後に、3C2{}_3C_2 を計算します。
3C2=3!2!(32)!=3!2!1!=3×2×1(2×1)×1=3{}_3C_2 = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1!} = \frac{3 \times 2 \times 1}{(2 \times 1) \times 1} = 3
したがって、10C4×6C3×3C2=210×20×3=4200×3=12600{}_{10}C_4 \times {}_6C_3 \times {}_3C_2 = 210 \times 20 \times 3 = 4200 \times 3 = 12600

3. 最終的な答え

12600

「確率論・統計学」の関連問題

7人の大人の中から3人を選び、6人の子供の中から3人を選んで、合計6人の組を作る組み合わせの数を求める問題です。

組み合わせ場合の数順列
2025/7/13

7人の大人の中から3人を選び、6人の子供の中から3人を選んで、合計6人の組を作る組み合わせの数を求めます。

組み合わせ場合の数組み合わせの計算
2025/7/13

7人の中から3人を選んで1列に並べる場合の、並べ方の総数を求めます。これは順列の問題です。

順列組み合わせ場合の数
2025/7/13

## 解答

順列組合せ場合の数
2025/7/13

組み合わせの計算 $_{18}C_{15}$ の値を求めます。

組み合わせ二項係数組み合わせの計算
2025/7/13

組み合わせの数 ${}_{18}C_{15}$ の値を求める問題です。

組み合わせ二項係数計算
2025/7/13

${}_{10}C_4$ の値を求めよ。

組み合わせ二項係数組合せ
2025/7/13

50から100までの番号札が1枚ずつあるとき、その番号が以下の条件を満たす確率を求める問題です。 (1) 3の倍数である確率 (2) 7の倍数である確率 (3) 3の倍数または7の倍数である確率 (4...

確率倍数排反事象集合
2025/7/13

袋の中に赤玉が5個、白玉が3個入っています。この中から同時に3個取り出すとき、以下の問いに答えてください。ただし、玉はすべて区別するものとします。 (1) 3個が同じ色である取り出し方は何通りあるか。...

組み合わせ確率場合の数
2025/7/13

(1) 15人の中から4人の係を選ぶ組み合わせの数を求める。 (2) 12枚の異なるカードから9枚を選ぶ組み合わせの数を求める。 (3) 8個の数字1, 1, 1, 2, 3, 3, 3, 3を並べて...

組み合わせ順列場合の数
2025/7/13