2変数関数のマクローリン展開(原点周りのテイラー展開)を3次の項まで求める問題です。 (1) $z = e^{x+y}$ (2) $z = e^x \cos y$解析学テイラー展開マクローリン展開多変数関数偏微分2025/7/61. 問題の内容2変数関数のマクローリン展開(原点周りのテイラー展開)を3次の項まで求める問題です。(1) z=ex+yz = e^{x+y}z=ex+y(2) z=excosyz = e^x \cos yz=excosy2. 解き方の手順(1) z=ex+yz = e^{x+y}z=ex+yの場合マクローリン展開は、f(x,y)=f(0,0)+fx(0,0)x+fy(0,0)y+12(fxx(0,0)x2+2fxy(0,0)xy+fyy(0,0)y2)+16(fxxx(0,0)x3+3fxxy(0,0)x2y+3fxyy(0,0)xy2+fyyy(0,0)y3)+⋯f(x,y) = f(0,0) + f_x(0,0)x + f_y(0,0)y + \frac{1}{2}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2) + \frac{1}{6}(f_{xxx}(0,0)x^3 + 3f_{xxy}(0,0)x^2y + 3f_{xyy}(0,0)xy^2 + f_{yyy}(0,0)y^3) + \cdotsf(x,y)=f(0,0)+fx(0,0)x+fy(0,0)y+21(fxx(0,0)x2+2fxy(0,0)xy+fyy(0,0)y2)+61(fxxx(0,0)x3+3fxxy(0,0)x2y+3fxyy(0,0)xy2+fyyy(0,0)y3)+⋯で与えられます。f(x,y)=ex+yf(x,y) = e^{x+y}f(x,y)=ex+yf(0,0)=e0=1f(0,0) = e^0 = 1f(0,0)=e0=1fx(x,y)=ex+yf_x(x,y) = e^{x+y}fx(x,y)=ex+yfx(0,0)=1f_x(0,0) = 1fx(0,0)=1fy(x,y)=ex+yf_y(x,y) = e^{x+y}fy(x,y)=ex+yfy(0,0)=1f_y(0,0) = 1fy(0,0)=1fxx(x,y)=ex+yf_{xx}(x,y) = e^{x+y}fxx(x,y)=ex+yfxx(0,0)=1f_{xx}(0,0) = 1fxx(0,0)=1fxy(x,y)=ex+yf_{xy}(x,y) = e^{x+y}fxy(x,y)=ex+yfxy(0,0)=1f_{xy}(0,0) = 1fxy(0,0)=1fyy(x,y)=ex+yf_{yy}(x,y) = e^{x+y}fyy(x,y)=ex+yfyy(0,0)=1f_{yy}(0,0) = 1fyy(0,0)=1fxxx(x,y)=ex+yf_{xxx}(x,y) = e^{x+y}fxxx(x,y)=ex+yfxxx(0,0)=1f_{xxx}(0,0) = 1fxxx(0,0)=1fxxy(x,y)=ex+yf_{xxy}(x,y) = e^{x+y}fxxy(x,y)=ex+yfxxy(0,0)=1f_{xxy}(0,0) = 1fxxy(0,0)=1fxyy(x,y)=ex+yf_{xyy}(x,y) = e^{x+y}fxyy(x,y)=ex+yfxyy(0,0)=1f_{xyy}(0,0) = 1fxyy(0,0)=1fyyy(x,y)=ex+yf_{yyy}(x,y) = e^{x+y}fyyy(x,y)=ex+yfyyy(0,0)=1f_{yyy}(0,0) = 1fyyy(0,0)=1したがって、ex+y=1+x+y+12(x2+2xy+y2)+16(x3+3x2y+3xy2+y3)+⋯e^{x+y} = 1 + x + y + \frac{1}{2}(x^2 + 2xy + y^2) + \frac{1}{6}(x^3 + 3x^2y + 3xy^2 + y^3) + \cdotsex+y=1+x+y+21(x2+2xy+y2)+61(x3+3x2y+3xy2+y3)+⋯ex+y=1+(x+y)+12(x+y)2+16(x+y)3+⋯e^{x+y} = 1 + (x+y) + \frac{1}{2}(x+y)^2 + \frac{1}{6}(x+y)^3 + \cdotsex+y=1+(x+y)+21(x+y)2+61(x+y)3+⋯(2) z=excosyz = e^x \cos yz=excosyの場合f(x,y)=excosyf(x,y) = e^x \cos yf(x,y)=excosyf(0,0)=e0cos0=1f(0,0) = e^0 \cos 0 = 1f(0,0)=e0cos0=1fx(x,y)=excosyf_x(x,y) = e^x \cos yfx(x,y)=excosyfx(0,0)=1f_x(0,0) = 1fx(0,0)=1fy(x,y)=−exsinyf_y(x,y) = -e^x \sin yfy(x,y)=−exsinyfy(0,0)=0f_y(0,0) = 0fy(0,0)=0fxx(x,y)=excosyf_{xx}(x,y) = e^x \cos yfxx(x,y)=excosyfxx(0,0)=1f_{xx}(0,0) = 1fxx(0,0)=1fxy(x,y)=−exsinyf_{xy}(x,y) = -e^x \sin yfxy(x,y)=−exsinyfxy(0,0)=0f_{xy}(0,0) = 0fxy(0,0)=0fyy(x,y)=−excosyf_{yy}(x,y) = -e^x \cos yfyy(x,y)=−excosyfyy(0,0)=−1f_{yy}(0,0) = -1fyy(0,0)=−1fxxx(x,y)=excosyf_{xxx}(x,y) = e^x \cos yfxxx(x,y)=excosyfxxx(0,0)=1f_{xxx}(0,0) = 1fxxx(0,0)=1fxxy(x,y)=−exsinyf_{xxy}(x,y) = -e^x \sin yfxxy(x,y)=−exsinyfxxy(0,0)=0f_{xxy}(0,0) = 0fxxy(0,0)=0fxyy(x,y)=−excosyf_{xyy}(x,y) = -e^x \cos yfxyy(x,y)=−excosyfxyy(0,0)=−1f_{xyy}(0,0) = -1fxyy(0,0)=−1fyyy(x,y)=exsinyf_{yyy}(x,y) = e^x \sin yfyyy(x,y)=exsinyfyyy(0,0)=0f_{yyy}(0,0) = 0fyyy(0,0)=0したがって、excosy=1+x+12(x2−y2)+16(x3−3xy2)+⋯e^x \cos y = 1 + x + \frac{1}{2}(x^2 - y^2) + \frac{1}{6}(x^3 - 3xy^2) + \cdotsexcosy=1+x+21(x2−y2)+61(x3−3xy2)+⋯3. 最終的な答え(1) ex+y=1+x+y+12(x+y)2+16(x+y)3+⋯e^{x+y} = 1 + x + y + \frac{1}{2}(x+y)^2 + \frac{1}{6}(x+y)^3 + \cdotsex+y=1+x+y+21(x+y)2+61(x+y)3+⋯(2) excosy=1+x+12(x2−y2)+16(x3−3xy2)+⋯e^x \cos y = 1 + x + \frac{1}{2}(x^2 - y^2) + \frac{1}{6}(x^3 - 3xy^2) + \cdotsexcosy=1+x+21(x2−y2)+61(x3−3xy2)+⋯