与えられた式 $y = 3cx + 2az + ab$ を $z$ について解く問題です。

代数学方程式式変形文字式
2025/7/10

1. 問題の内容

与えられた式 y=3cx+2az+aby = 3cx + 2az + abzz について解く問題です。

2. 解き方の手順

まず、zz を含む項を左辺に、それ以外の項を右辺に移動させます。
y=3cx+2az+aby = 3cx + 2az + ab
y3cxab=2azy - 3cx - ab = 2az
次に、zz について解くために、両辺を 2a2a で割ります。
y3cxab2a=z\frac{y - 3cx - ab}{2a} = z
したがって、zz は以下のように表されます。
z=y3cxab2az = \frac{y - 3cx - ab}{2a}

3. 最終的な答え

z=y3cxab2az = \frac{y - 3cx - ab}{2a}

「代数学」の関連問題

問題4は、ある等差数列の初項から第$n$項までの和を$S_n$とするとき、$S_{10} = 100$, $S_{20} = 400$である。この数列の初項から第30項までの和$S_{30}$を求める...

等差数列数列の和一般項
2025/7/16

与えられた連立一次方程式を消去法で解く。問題は2つあり、それぞれ(1)と(2)で示される。 (1) $4x - 2y - 3z = 1$ $3x - 2y - z = -3$ $3x - y - 4z...

連立一次方程式消去法線形代数
2025/7/16

次の連立一次方程式を消去法で解く問題です。 $ \begin{cases} 4x - 2y - 3z = 1 \\ 3x - 2y - z = -3 \\ 3x - y - 4z = 5 \end{c...

連立一次方程式消去法線形代数
2025/7/16

与えられた10個の対数の式をそれぞれ簡単にします。

対数対数法則指数法則
2025/7/16

$a+b=10$ と $a-b=-2$ のとき、$a^2 - b^2$ の値を求めなさい。

因数分解式の計算連立方程式
2025/7/16

$x=27$, $y=22$ のとき、式 $x^2 - 2xy + y^2$ の値を求めなさい。

式の計算因数分解代入二乗
2025/7/16

$x = 9$, $y = -1$ のとき、次の式の値を求めなさい。 $(x-y)^2 - (x+4y)(x-3y)$

式の計算代入展開
2025/7/16

与えられた連立一次方程式を消去法で解く問題です。 (1) $4x - 2y - 3z = 1$ $3x - 2y - z = -3$ $3x - y - 4z = 5$ (2) $x - 2y - 3...

連立一次方程式消去法解の存在性
2025/7/16

与えられた式 $(12x^2 - 9x) \div 3$ を計算しなさい。

多項式の除算因数分解代数
2025/7/16

与えられた行列 $A = \begin{bmatrix} \frac{1}{2} & \frac{2}{4} \end{bmatrix}$ に対して、核 Ker $A$ の基底を一つ求める。

線形代数行列基底
2025/7/16