点 $(-4, 7)$ と直線 $x + 7y + 5 = 0$ の距離を求める問題です。

幾何学点と直線の距離幾何座標
2025/7/15

1. 問題の内容

(4,7)(-4, 7) と直線 x+7y+5=0x + 7y + 5 = 0 の距離を求める問題です。

2. 解き方の手順

(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 の距離 dd は、次の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、x0=4x_0 = -4, y0=7y_0 = 7, a=1a = 1, b=7b = 7, c=5c = 5 です。
これらの値を公式に代入します。
d=1(4)+77+512+72d = \frac{|1 \cdot (-4) + 7 \cdot 7 + 5|}{\sqrt{1^2 + 7^2}}
d=4+49+51+49d = \frac{|-4 + 49 + 5|}{\sqrt{1 + 49}}
d=5050d = \frac{|50|}{\sqrt{50}}
d=5050d = \frac{50}{\sqrt{50}}
d=5052d = \frac{50}{5\sqrt{2}}
d=102d = \frac{10}{\sqrt{2}}
d=1022d = \frac{10\sqrt{2}}{2}
d=52d = 5\sqrt{2}

3. 最終的な答え

525\sqrt{2}

「幾何学」の関連問題

半径 $R$ の球に高さ $h$ の直円錐が内接している。ただし、$R \le h < 2R$ とする。 (5) 底面の半径 $r$ を $R$ と $h$ の式で表せ。 (6) 直円錐の体積 $V$...

体積円錐最大値微分三平方の定理
2025/7/17

問題は、下図において $BC = 1$, $BD = 4$, $\angle C = 90^\circ$, $\angle ABC = 60^\circ$ であるとき、$\angle D = \the...

三角比余弦定理正弦定理三角形
2025/7/17

円すいの展開図が与えられています。底面の円の半径が4cmで、側面のおうぎ形の中心角が120°です。この円すいの母線の長さを求めます。

円すい展開図おうぎ形円周母線
2025/7/17

右の図の正方形を、直線 $l$ を軸にして1回転させてできる立体の体積を求める問題です。正方形の一辺の長さは2cmです。

体積円柱回転体正方形
2025/7/17

三角形ABCがあり、AB=6、BC=8、面積が$3\sqrt{15}$である。この三角形の内接円の半径を求める。

三角形内接円余弦定理面積三角比
2025/7/17

正十角形ABCDEFGHIJの3つの頂点を結んで三角形を作る。 (ア) できる三角形の総数を求める。 (イ) 正十角形と1辺だけを共有する三角形の個数を求める。 (ウ) 正十角形と辺を共有しない三角形...

組み合わせ多角形三角形図形
2025/7/17

(1) 図に示された長方形に含まれる長方形の総数を求めます。 (2) 正十角形ABCDEFGHIJの3つの頂点を結んで三角形を作ります。 (ア) 作れる三角形の総数を求めます。 (イ) 正...

組み合わせ長方形正多角形三角形
2025/7/17

2点 $A(2, 0)$, $B(-2, 0)$ に対し、$AP^2 - BP^2 = 16$ を満たす点 $P$ の軌跡を求める問題です。

軌跡座標平面距離
2025/7/17

2本の対角線が、図のように交わっている四角形は何か答える問題です。 問題は2つあります。

四角形対角線ひし形平行四辺形角度
2025/7/17

問題の図形は、中心から3cmの距離にある点が4つあり、そのうちの2つの線がなす角が70°であることがわかっています。問題文が不明ですが、ここでは図形の面積を求める問題として解釈します。

面積扇形二等辺三角形三角関数
2025/7/17