点 $(-1, -2)$ と直線 $4x + 3y - 5 = 0$ との距離を求めよ。

幾何学点と直線の距離距離公式座標平面
2025/7/15

1. 問題の内容

(1,2)(-1, -2) と直線 4x+3y5=04x + 3y - 5 = 0 との距離を求めよ。

2. 解き方の手順

(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 との距離 dd は、次の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、(x0,y0)=(1,2)(x_0, y_0) = (-1, -2) であり、a=4a = 4, b=3b = 3, c=5c = -5 です。
これらの値を公式に代入して計算します。
d=4(1)+3(2)542+32d = \frac{|4(-1) + 3(-2) - 5|}{\sqrt{4^2 + 3^2}}
d=46516+9d = \frac{|-4 - 6 - 5|}{\sqrt{16 + 9}}
d=1525d = \frac{|-15|}{\sqrt{25}}
d=155d = \frac{15}{5}
d=3d = 3

3. 最終的な答え

3

「幾何学」の関連問題

練習6の4つの問題について、与えられた2点間の距離を求める問題です。 (1) A(1, 2), B(4, 6) (2) A(-3, 1), B(2, -4) (3) A(5, -2), B(3, -2...

距離座標平面三平方の定理
2025/7/17

2点A(4), B(8)を結ぶ線分ABについて、以下の点の座標を求めます。 (1) 3:2に内分する点C (2) 3:1に外分する点D (3) 2:3に外分する点E (4) 中点M

線分内分点外分点中点座標
2025/7/17

問題は、線分ABを3:1に内分する点P、3:1に外分する点Q、3:7に外分する点Rを数直線上に図示することです。

線分内分外分数直線
2025/7/17

問題は、数直線上の2点 A(4) と B(8) が与えられたとき、線分 AB を指定された比で内分または外分する点の座標を求めるものです。 (1) 3:2 に内分する点 C の座標 (2) 3:1 に...

線分内分点外分点座標中点
2025/7/17

加法定理を用いて、$\cos(\frac{3}{4}\pi)$ の値を求める問題です。

三角関数加法定理cos角度
2025/7/17

四面体ABCDにおいて、$AB=AC=AD=3$、$BC=CD=DB=\sqrt{3}$のとき、この四面体の体積を求めよ。

四面体体積空間図形三平方の定理正三角形外心
2025/7/17

$xy$ 平面上に3点 $O(0, 0)$, $A(-1, -2)$, $B(1, -2)$ がある。線分 $OA$ を $(1-\alpha) : \alpha$ の比に分ける点を $P$, 線分 ...

ベクトル内分点領域
2025/7/17

直角三角形ABCにおいて、∠B = 90°である。点D, E, Fはそれぞれ外心、内心、重心のいずれかである。 (i) 外心、内心、重心はそれぞれD, E, Fのどれに対応するかを答える。 (ii) ...

三角形直角三角形外心内心重心幾何学的性質
2025/7/17

三角形ABCにおいて、ADは角Aの外角の二等分線である。AB = 6, BC = 5, AC = 8 のとき、BD = x の値を求める。

角の二等分線相似三角形外角
2025/7/17

三角形ABCにおいて、ADは角Aの外角の二等分線である。AB=9, AC=6, BC=10であるとき、CD=xの値を求める。

幾何三角形外角の二等分線
2025/7/17