1. 問題の内容
与えられた10個の極限値を計算し、最後に与えられた展開式における係数Aを求める問題です。
2. 解き方の手順
(1) limx→0x3tanx−x
tanx=x+3x3+152x5+...なので、
limx→0x3(x+3x3+152x5+...)−x=limx→0x33x3+152x5+...=31
(2) limx→0(x21−sin2x1)
sinx=x−6x3+120x5−...なので、
sin2x=(x−6x3+120x5−...)2=x2−3x4+452x6−...
sin2x1=x2−3x4+452x6−...1=x21(1−3x2+452x4−...)−1=x21(1+3x2+O(x4))
limx→0(x21−sin2x1)=limx→0(x21−x21(1+3x2+...))=limx→0(−31+O(x2))=−31
(3) limx→0x3ex−esinx
ex=1+x+2x2+6x3+...
esinx=1+sinx+2sin2x+6sin3x+...=1+(x−6x3+...)+2(x−6x3+...)2+6(x−6x3+...)3+...=1+x+2x2−8x4+...−6x3+6x3+O(x4)
ex−esinx=(1+x+2x2+6x3+...)−(1+x+2x2−6x3+...)=3x3+O(x4)
limx→0x3ex−esinx=limx→0x33x3+O(x4)=31
(4) limx→π/2logsinxesinx−e
t=sinx とおくと、x→π/2 のとき、t→1
limx→π/2logsinxesinx−e=limt→1logtet−e=limt→1t1et=limt→1tet=e
(5) limx→11−x+logxxx−x
x=1+h とおくと、x→1 のとき、h→0
limx→11−x+logxxx−x=limh→01−(1+h)+log(1+h)(1+h)1+h−(1+h)
limh→0−h+(h−2h2+...)(1+h)e(1+h)log(1+h)−(1+h)=limh→0−2h2(1+h)e(1+h)(h−2h2+...)−(1+h)=limh→0−2h2(1+h)(1+(1+h)(h−2h2+...)+...)−(1+h)=limh→0−2h2(1+h)(1+h−2h2+h2+...)−(1+h)=limh→0−2h21+h+h+h2+2h2−(1+h)=limh→0h−2h2+O(h3)h−2h2+h2+...+O(h3)=limh→0(1−h)−(h2/2)+O(h3)(1+h)−2h2+O(h3)
=limh→0−2h22h+O(h2)=−2
(6) limx→0x(1+x)1/x−e
(1+x)1/x=ex1log(1+x)=ex1(x−2x2+3x3−...)=e1−2x+3x2−...=e⋅e−2x+3x2−...=e(1+(−2x+3x2−...)+2(−2x+3x2−...)2+...)=e(1−2x+3x2+8x2+...)=e(1−2x+2411x2+...)
limx→0x(1+x)1/x−e=limx→0xe(1−2x+2411x2+...)−e=limx→0xe(−2x+2411x2+...)=−2e
(7) limx→∞x1/x
limx→∞x1/x=limx→∞exlogx
limx→∞xlogx=0 なので、
limx→∞exlogx=e0=1
(8) limx→0(2ax+bx)1/x (a, b > 0)
limx→0(2ax+bx)1/x=limx→0ex1log(2ax+bx)
ax=1+xloga+2(xloga)2+...
bx=1+xlogb+2(xlogb)2+...
2ax+bx=21+xloga+2(xloga)2+...+1+xlogb+2(xlogb)2+...=1+x2loga+logb+...=1+xlogab+...
log(2ax+bx)=log(1+xlogab+...)=xlogab+O(x2)
limx→0ex1log(2ax+bx)=limx→0ex1(xlogab+...)=elogab=ab
平方根に入るものは ab.
(9) limx→∞{x−x2log(1+x1)}
log(1+x1)=x1−2x21+3x31−...
x−x2log(1+x1)=x−x2(x1−2x21+3x31−...)=x−(x−21+3x1−...)=21−3x1+...
limx→∞{x−x2log(1+x1)}=21
(10) limx→∞logxlog(1+x1)
limx→∞logxlog(1+x1)=limx→∞logx(x1−2x21+...)=limx→∞xlogx=0
展開式: 1−x1=1+x+x2+...+Axn+...より、A=1
3. 最終的な答え
(1) 1/3
(2) -1/3
(3) 1/3
(4) e
(5) -2
(6) -e/2
(7) 1
(8) ab
(9) 1/2
(10) 0
A = 1