## 問題1解析学積分置換積分部分分数分解不定積分2025/7/17## 問題11. 問題の内容与えられた積分を計算します。(2) ∫xx2−2x+2dx\int \frac{x}{x^2 - 2x + 2} dx∫x2−2x+2xdx(3) ∫x3x2−x−12dx\int \frac{x^3}{x^2 - x - 12} dx∫x2−x−12x3dx## 問題2の解き方の手順(2) ∫xx2−2x+2dx\int \frac{x}{x^2 - 2x + 2} dx∫x2−2x+2xdx分母を平方完成させます。x2−2x+2=(x−1)2+1x^2 - 2x + 2 = (x-1)^2 + 1x2−2x+2=(x−1)2+1x−1=ux-1 = ux−1=u と置換すると、x=u+1x = u+1x=u+1、dx=dudx = dudx=du となります。∫xx2−2x+2dx=∫u+1u2+1du=∫uu2+1du+∫1u2+1du\int \frac{x}{x^2 - 2x + 2} dx = \int \frac{u+1}{u^2+1} du = \int \frac{u}{u^2+1} du + \int \frac{1}{u^2+1} du∫x2−2x+2xdx=∫u2+1u+1du=∫u2+1udu+∫u2+11du∫uu2+1du\int \frac{u}{u^2+1} du∫u2+1udu について、v=u2+1v = u^2+1v=u2+1 と置換すると、dv=2ududv = 2u dudv=2udu となります。∫uu2+1du=12∫dvv=12ln∣v∣=12ln(u2+1)\int \frac{u}{u^2+1} du = \frac{1}{2} \int \frac{dv}{v} = \frac{1}{2} \ln|v| = \frac{1}{2} \ln(u^2+1)∫u2+1udu=21∫vdv=21ln∣v∣=21ln(u2+1)∫1u2+1du=arctan(u)\int \frac{1}{u^2+1} du = \arctan(u)∫u2+11du=arctan(u)したがって、∫xx2−2x+2dx=12ln(u2+1)+arctan(u)+C=12ln((x−1)2+1)+arctan(x−1)+C=12ln(x2−2x+2)+arctan(x−1)+C\int \frac{x}{x^2 - 2x + 2} dx = \frac{1}{2} \ln(u^2+1) + \arctan(u) + C = \frac{1}{2} \ln((x-1)^2+1) + \arctan(x-1) + C = \frac{1}{2} \ln(x^2 - 2x + 2) + \arctan(x-1) + C∫x2−2x+2xdx=21ln(u2+1)+arctan(u)+C=21ln((x−1)2+1)+arctan(x−1)+C=21ln(x2−2x+2)+arctan(x−1)+C(3) ∫x3x2−x−12dx\int \frac{x^3}{x^2 - x - 12} dx∫x2−x−12x3dx割り算を実行します。x3x2−x−12=x+1+13x+12x2−x−12=x+1+13x+12(x−4)(x+3)\frac{x^3}{x^2 - x - 12} = x+1+\frac{13x+12}{x^2 - x - 12} = x+1+\frac{13x+12}{(x-4)(x+3)}x2−x−12x3=x+1+x2−x−1213x+12=x+1+(x−4)(x+3)13x+12部分分数分解します。13x+12(x−4)(x+3)=Ax−4+Bx+3\frac{13x+12}{(x-4)(x+3)} = \frac{A}{x-4} + \frac{B}{x+3}(x−4)(x+3)13x+12=x−4A+x+3B13x+12=A(x+3)+B(x−4)13x+12 = A(x+3) + B(x-4)13x+12=A(x+3)+B(x−4)x=4x=4x=4 のとき、13(4)+12=52+12=64=A(4+3)=7A13(4)+12 = 52+12 = 64 = A(4+3) = 7A13(4)+12=52+12=64=A(4+3)=7A より、A=647A = \frac{64}{7}A=764x=−3x=-3x=−3 のとき、13(−3)+12=−39+12=−27=B(−3−4)=−7B13(-3)+12 = -39+12 = -27 = B(-3-4) = -7B13(−3)+12=−39+12=−27=B(−3−4)=−7B より、B=277B = \frac{27}{7}B=727したがって、∫x3x2−x−12dx=∫(x+1+64/7x−4+27/7x+3)dx=∫(x+1)dx+647∫1x−4dx+277∫1x+3dx\int \frac{x^3}{x^2 - x - 12} dx = \int (x+1+\frac{64/7}{x-4} + \frac{27/7}{x+3}) dx = \int (x+1) dx + \frac{64}{7} \int \frac{1}{x-4} dx + \frac{27}{7} \int \frac{1}{x+3} dx∫x2−x−12x3dx=∫(x+1+x−464/7+x+327/7)dx=∫(x+1)dx+764∫x−41dx+727∫x+31dx=12x2+x+647ln∣x−4∣+277ln∣x+3∣+C= \frac{1}{2}x^2 + x + \frac{64}{7} \ln|x-4| + \frac{27}{7} \ln|x+3| + C=21x2+x+764ln∣x−4∣+727ln∣x+3∣+C## 最終的な答え(2) 12ln(x2−2x+2)+arctan(x−1)+C\frac{1}{2} \ln(x^2 - 2x + 2) + \arctan(x-1) + C21ln(x2−2x+2)+arctan(x−1)+C(3) 12x2+x+647ln∣x−4∣+277ln∣x+3∣+C\frac{1}{2}x^2 + x + \frac{64}{7} \ln|x-4| + \frac{27}{7} \ln|x+3| + C21x2+x+764ln∣x−4∣+727ln∣x+3∣+C