長方形と半円を組み合わせた花壇の面積を考えます。花壇の囲いを作る材料が合計で12mあります。長方形の縦の長さを $x$ m とするとき、花壇の面積 $y$ が最大となるような $x$ の値を求める問題です。
2025/7/17
1. 問題の内容
長方形と半円を組み合わせた花壇の面積を考えます。花壇の囲いを作る材料が合計で12mあります。長方形の縦の長さを m とするとき、花壇の面積 が最大となるような の値を求める問題です。
2. 解き方の手順
(1) 長方形の縦の長さ と、半円の半径 の関係を求めます。囲いの長さは となります。
(2) 花壇の面積 を の式で表します。長方形の面積は 、半円の面積は です。したがって、
(3) を最大にする の値を求めます。 を の二次関数と見て、平方完成を行うか、微分して極値を求める方法があります。ここでは平方完成を行います。
が最大となるのは のときです。