関数 $f(x) = e^x \sin x$ の5次導関数 $f^{(5)}(x)$ を求め、その値 $f^{(5)}(0)$ を選択肢の中から選ぶ。解析学導関数指数関数三角関数ライプニッツの公式2025/7/171. 問題の内容関数 f(x)=exsinxf(x) = e^x \sin xf(x)=exsinx の5次導関数 f(5)(x)f^{(5)}(x)f(5)(x) を求め、その値 f(5)(0)f^{(5)}(0)f(5)(0) を選択肢の中から選ぶ。2. 解き方の手順まず、f(x)=exsinxf(x) = e^x \sin xf(x)=exsinx の導関数をいくつか計算し、規則性を見つけることを試みます。f′(x)=exsinx+excosx=ex(sinx+cosx)f'(x) = e^x \sin x + e^x \cos x = e^x(\sin x + \cos x)f′(x)=exsinx+excosx=ex(sinx+cosx)f′′(x)=ex(sinx+cosx)+ex(cosx−sinx)=ex(2cosx)f''(x) = e^x(\sin x + \cos x) + e^x(\cos x - \sin x) = e^x(2\cos x)f′′(x)=ex(sinx+cosx)+ex(cosx−sinx)=ex(2cosx)f′′′(x)=ex(2cosx)+ex(−2sinx)=ex(2cosx−2sinx)f'''(x) = e^x(2\cos x) + e^x(-2\sin x) = e^x(2\cos x - 2\sin x)f′′′(x)=ex(2cosx)+ex(−2sinx)=ex(2cosx−2sinx)f(4)(x)=ex(2cosx−2sinx)+ex(−2sinx−2cosx)=ex(−4sinx)f^{(4)}(x) = e^x(2\cos x - 2\sin x) + e^x(-2\sin x - 2\cos x) = e^x(-4\sin x)f(4)(x)=ex(2cosx−2sinx)+ex(−2sinx−2cosx)=ex(−4sinx)f(5)(x)=ex(−4sinx)+ex(−4cosx)=−4ex(sinx+cosx)f^{(5)}(x) = e^x(-4\sin x) + e^x(-4\cos x) = -4e^x(\sin x + \cos x)f(5)(x)=ex(−4sinx)+ex(−4cosx)=−4ex(sinx+cosx)したがって、f(5)(0)=−4e0(sin0+cos0)=−4(1)(0+1)=−4f^{(5)}(0) = -4e^0(\sin 0 + \cos 0) = -4(1)(0 + 1) = -4f(5)(0)=−4e0(sin0+cos0)=−4(1)(0+1)=−4別の解法として、ライプニッツの公式を利用することもできます。f(x)=exsinxf(x) = e^x \sin xf(x)=exsinx に対して、f(n)(x)=∑k=0n(nk)(ex)(k)(sinx)(n−k)f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} (e^x)^{(k)} (\sin x)^{(n-k)}f(n)(x)=∑k=0n(kn)(ex)(k)(sinx)(n−k)f(5)(0)=∑k=05(5k)(e0)(sinx)(5−k)∣x=0f^{(5)}(0) = \sum_{k=0}^{5} \binom{5}{k} (e^0) (\sin x)^{(5-k)}|_{x=0}f(5)(0)=∑k=05(k5)(e0)(sinx)(5−k)∣x=0f(5)(0)=(50)e0sin(5)(0)+(51)e0sin(4)(0)+(52)e0sin(3)(0)+(53)e0sin(2)(0)+(54)e0sin(1)(0)+(55)e0sin(0)(0)f^{(5)}(0) = \binom{5}{0} e^0 \sin^{(5)}(0) + \binom{5}{1} e^0 \sin^{(4)}(0) + \binom{5}{2} e^0 \sin^{(3)}(0) + \binom{5}{3} e^0 \sin^{(2)}(0) + \binom{5}{4} e^0 \sin^{(1)}(0) + \binom{5}{5} e^0 \sin^{(0)}(0)f(5)(0)=(05)e0sin(5)(0)+(15)e0sin(4)(0)+(25)e0sin(3)(0)+(35)e0sin(2)(0)+(45)e0sin(1)(0)+(55)e0sin(0)(0)ここで、sin(0)(x)=sin(x),sin(1)(x)=cos(x),sin(2)(x)=−sin(x),sin(3)(x)=−cos(x),sin(4)(x)=sin(x),sin(5)(x)=cos(x)\sin^{(0)}(x) = \sin(x), \sin^{(1)}(x) = \cos(x), \sin^{(2)}(x) = -\sin(x), \sin^{(3)}(x) = -\cos(x), \sin^{(4)}(x) = \sin(x), \sin^{(5)}(x) = \cos(x)sin(0)(x)=sin(x),sin(1)(x)=cos(x),sin(2)(x)=−sin(x),sin(3)(x)=−cos(x),sin(4)(x)=sin(x),sin(5)(x)=cos(x)したがって、sin(0)(0)=0,sin(1)(0)=1,sin(2)(0)=0,sin(3)(0)=−1,sin(4)(0)=0,sin(5)(0)=1\sin^{(0)}(0) = 0, \sin^{(1)}(0) = 1, \sin^{(2)}(0) = 0, \sin^{(3)}(0) = -1, \sin^{(4)}(0) = 0, \sin^{(5)}(0) = 1sin(0)(0)=0,sin(1)(0)=1,sin(2)(0)=0,sin(3)(0)=−1,sin(4)(0)=0,sin(5)(0)=1(50)=1,(51)=5,(52)=10,(53)=10,(54)=5,(55)=1\binom{5}{0} = 1, \binom{5}{1} = 5, \binom{5}{2} = 10, \binom{5}{3} = 10, \binom{5}{4} = 5, \binom{5}{5} = 1(05)=1,(15)=5,(25)=10,(35)=10,(45)=5,(55)=1f(5)(0)=(1)(1)(1)+(5)(1)(0)+(10)(1)(−1)+(10)(1)(0)+(5)(1)(1)+(1)(1)(0)=1−10+5=−4f^{(5)}(0) = (1)(1)(1) + (5)(1)(0) + (10)(1)(-1) + (10)(1)(0) + (5)(1)(1) + (1)(1)(0) = 1 - 10 + 5 = -4f(5)(0)=(1)(1)(1)+(5)(1)(0)+(10)(1)(−1)+(10)(1)(0)+(5)(1)(1)+(1)(1)(0)=1−10+5=−43. 最終的な答え-4