次の定積分の値を求めます。 a) $\int_{1}^{2} \frac{1}{x^2} dx$ b) $\int_{0}^{1} \frac{1}{\sqrt{x+2} + \sqrt{x+1}} dx$解析学定積分積分原始関数有理化2025/7/191. 問題の内容次の定積分の値を求めます。a) ∫121x2dx\int_{1}^{2} \frac{1}{x^2} dx∫12x21dxb) ∫011x+2+x+1dx\int_{0}^{1} \frac{1}{\sqrt{x+2} + \sqrt{x+1}} dx∫01x+2+x+11dx2. 解き方の手順a) ∫121x2dx\int_{1}^{2} \frac{1}{x^2} dx∫12x21dx を計算します。1x2\frac{1}{x^2}x21 の原始関数は −1x-\frac{1}{x}−x1 です。したがって、∫121x2dx=[−1x]12=−12−(−1)=−12+1=12\int_{1}^{2} \frac{1}{x^2} dx = \left[-\frac{1}{x}\right]_{1}^{2} = -\frac{1}{2} - (-1) = -\frac{1}{2} + 1 = \frac{1}{2}∫12x21dx=[−x1]12=−21−(−1)=−21+1=21b) ∫011x+2+x+1dx\int_{0}^{1} \frac{1}{\sqrt{x+2} + \sqrt{x+1}} dx∫01x+2+x+11dx を計算します。分母を有理化するために、分子と分母に x+2−x+1\sqrt{x+2} - \sqrt{x+1}x+2−x+1 を掛けます。1x+2+x+1=x+2−x+1(x+2+x+1)(x+2−x+1)=x+2−x+1(x+2)−(x+1)=x+2−x+1\frac{1}{\sqrt{x+2} + \sqrt{x+1}} = \frac{\sqrt{x+2} - \sqrt{x+1}}{(\sqrt{x+2} + \sqrt{x+1})(\sqrt{x+2} - \sqrt{x+1})} = \frac{\sqrt{x+2} - \sqrt{x+1}}{(x+2) - (x+1)} = \sqrt{x+2} - \sqrt{x+1}x+2+x+11=(x+2+x+1)(x+2−x+1)x+2−x+1=(x+2)−(x+1)x+2−x+1=x+2−x+1したがって、∫011x+2+x+1dx=∫01(x+2−x+1)dx\int_{0}^{1} \frac{1}{\sqrt{x+2} + \sqrt{x+1}} dx = \int_{0}^{1} (\sqrt{x+2} - \sqrt{x+1}) dx∫01x+2+x+11dx=∫01(x+2−x+1)dx∫x+2dx=23(x+2)3/2+C\int \sqrt{x+2} dx = \frac{2}{3}(x+2)^{3/2} + C∫x+2dx=32(x+2)3/2+C∫x+1dx=23(x+1)3/2+C\int \sqrt{x+1} dx = \frac{2}{3}(x+1)^{3/2} + C∫x+1dx=32(x+1)3/2+C∫01(x+2−x+1)dx=[23(x+2)3/2−23(x+1)3/2]01\int_{0}^{1} (\sqrt{x+2} - \sqrt{x+1}) dx = \left[\frac{2}{3}(x+2)^{3/2} - \frac{2}{3}(x+1)^{3/2}\right]_{0}^{1}∫01(x+2−x+1)dx=[32(x+2)3/2−32(x+1)3/2]01=(23(1+2)3/2−23(1+1)3/2)−(23(0+2)3/2−23(0+1)3/2)= \left(\frac{2}{3}(1+2)^{3/2} - \frac{2}{3}(1+1)^{3/2}\right) - \left(\frac{2}{3}(0+2)^{3/2} - \frac{2}{3}(0+1)^{3/2}\right)=(32(1+2)3/2−32(1+1)3/2)−(32(0+2)3/2−32(0+1)3/2)=(23(3)3/2−23(2)3/2)−(23(2)3/2−23(1)3/2)= \left(\frac{2}{3}(3)^{3/2} - \frac{2}{3}(2)^{3/2}\right) - \left(\frac{2}{3}(2)^{3/2} - \frac{2}{3}(1)^{3/2}\right)=(32(3)3/2−32(2)3/2)−(32(2)3/2−32(1)3/2)=23(33−22)−23(22−1)= \frac{2}{3}(3\sqrt{3} - 2\sqrt{2}) - \frac{2}{3}(2\sqrt{2} - 1)=32(33−22)−32(22−1)=23−423−423+23=23−823+23= 2\sqrt{3} - \frac{4\sqrt{2}}{3} - \frac{4\sqrt{2}}{3} + \frac{2}{3} = 2\sqrt{3} - \frac{8\sqrt{2}}{3} + \frac{2}{3}=23−342−342+32=23−382+323. 最終的な答えa) 12\frac{1}{2}21b) 23−823+232\sqrt{3} - \frac{8\sqrt{2}}{3} + \frac{2}{3}23−382+32