博物館の入館料が大人1人500円、中学生1人300円である。大人と中学生合わせて5人で入館したところ、料金の合計が1900円だった。大人の人数を $x$ 人、中学生の人数を $y$ 人として、連立方程式を立てる。すでに、$x+y=5$ が与えられている。もう一つの式を作るために、問題文中のどの数量に着目すべきか、そしてその数量を両辺で表す式を完成させる問題である。

代数学連立方程式文章題料金方程式
2025/7/19

1. 問題の内容

博物館の入館料が大人1人500円、中学生1人300円である。大人と中学生合わせて5人で入館したところ、料金の合計が1900円だった。大人の人数を xx 人、中学生の人数を yy 人として、連立方程式を立てる。すでに、x+y=5x+y=5 が与えられている。もう一つの式を作るために、問題文中のどの数量に着目すべきか、そしてその数量を両辺で表す式を完成させる問題である。

2. 解き方の手順

問題文から、もう一つの式は料金の合計に関する式であることがわかる。
大人の料金は 500x500x 円、中学生の料金は 300y300y 円である。
料金の合計は1900円なので、500x+300y=1900500x + 300y = 1900という式が成り立つ。
したがって、着目すべき数量は「入館した大人と中学生の料金の合計」である。
これは選択肢の「オ」に該当する。

3. 最終的な答え

着目する数量:オ 入館した大人と中学生の料金の合計
式:500x+300y=1900500x + 300y = 1900

「代数学」の関連問題

与えられた6つの問題を解きます。 (1) $-6 - 4^2 \times \frac{1}{8}$ を計算する。 (2) $7a - b - 5(a - 2b)$ を計算する。 (3) $\sqrt...

四則演算文字式の計算平方根の計算一次方程式連立方程式二次方程式因数分解
2025/7/20

与えられた等式を満たす行列 $A$ を求めます。等式は次の通りです。 $ A \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix} = 3 \begin{pmatrix}...

線形代数行列線形変換ベクトル連立方程式
2025/7/20

行列 $A$ があり、ベクトル $\begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$ に $A$ をかけた結果が、ベクトル $\begin{pmatrix} 4 \\...

線形代数行列ベクトル連立方程式
2025/7/20

2次関数 $y = -2x^2 + 3x - 4$ の $-1 \le x \le 1$ における最大値と最小値を求めよ。

二次関数最大値最小値平方完成
2025/7/20

与えられた行列とベクトルの積を、3つのベクトルの線形結合として表現する問題です。 行列 $\begin{pmatrix} 3 & 5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ と...

線形代数行列ベクトル線形結合
2025/7/20

与えられた4x4の正方行列の4乗を計算する問題です。行列は $ \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0...

行列行列の累乗対角行列
2025/7/20

$x + \frac{2}{x} = 3$ のとき、以下の式の値をそれぞれ求めよ。 (1) $x^2 + \frac{4}{x^2}$ (2) $x^3 + \frac{8}{x^3}$ (3) $x...

代数式の計算分数式展開3次式2次式
2025/7/20

4辺の長さの和が16である長方形ABCDにおいて、辺BCの長さを$x$とし、長方形ABCDの面積を$y$とする。 (1) $y$を$x$の式で表しなさい。 (2) $y \geq 10$となる$x$の...

二次関数二次不等式長方形面積
2025/7/20

与えられた3次正方行列の2乗を計算する問題です。行列を $A$ とすると、$A^2 = A \times A$ を計算します。 与えられた行列は $ A = \begin{pmatrix} 0 & -...

行列行列の積線形代数
2025/7/20

与えられた2次正方行列 $A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ の2乗 $A^2$ と3乗 $A^3$ を計算する問題です。

行列行列の計算行列の累乗
2025/7/20