与えられた2つの式を展開する問題です。 (1) $(a+1)(a-b+2)$ (2) $(2x+y-1)(5x-3y)$代数学展開多項式2025/7/191. 問題の内容与えられた2つの式を展開する問題です。(1) (a+1)(a−b+2)(a+1)(a-b+2)(a+1)(a−b+2)(2) (2x+y−1)(5x−3y)(2x+y-1)(5x-3y)(2x+y−1)(5x−3y)2. 解き方の手順(1) の展開:分配法則を用いて、(a+1)(a+1)(a+1) を (a−b+2)(a-b+2)(a−b+2) の各項にかけます。(a+1)(a−b+2)=a(a−b+2)+1(a−b+2) (a+1)(a-b+2) = a(a-b+2) + 1(a-b+2) (a+1)(a−b+2)=a(a−b+2)+1(a−b+2)次に、それぞれの項を展開します。a(a−b+2)=a2−ab+2a a(a-b+2) = a^2 - ab + 2a a(a−b+2)=a2−ab+2a1(a−b+2)=a−b+2 1(a-b+2) = a - b + 2 1(a−b+2)=a−b+2これらを足し合わせます。a2−ab+2a+a−b+2=a2−ab+3a−b+2 a^2 - ab + 2a + a - b + 2 = a^2 - ab + 3a - b + 2 a2−ab+2a+a−b+2=a2−ab+3a−b+2(2) の展開:分配法則を用いて、(2x+y−1)(2x+y-1)(2x+y−1) を (5x−3y)(5x-3y)(5x−3y) の各項にかけます。(2x+y−1)(5x−3y)=2x(5x−3y)+y(5x−3y)−1(5x−3y) (2x+y-1)(5x-3y) = 2x(5x-3y) + y(5x-3y) - 1(5x-3y) (2x+y−1)(5x−3y)=2x(5x−3y)+y(5x−3y)−1(5x−3y)次に、それぞれの項を展開します。2x(5x−3y)=10x2−6xy 2x(5x-3y) = 10x^2 - 6xy 2x(5x−3y)=10x2−6xyy(5x−3y)=5xy−3y2 y(5x-3y) = 5xy - 3y^2 y(5x−3y)=5xy−3y2−1(5x−3y)=−5x+3y -1(5x-3y) = -5x + 3y −1(5x−3y)=−5x+3yこれらを足し合わせます。10x2−6xy+5xy−3y2−5x+3y=10x2−xy−3y2−5x+3y 10x^2 - 6xy + 5xy - 3y^2 - 5x + 3y = 10x^2 - xy - 3y^2 - 5x + 3y 10x2−6xy+5xy−3y2−5x+3y=10x2−xy−3y2−5x+3y3. 最終的な答え(1) の答え:a2−ab+3a−b+2a^2 - ab + 3a - b + 2a2−ab+3a−b+2(2) の答え:10x2−xy−3y2−5x+3y10x^2 - xy - 3y^2 - 5x + 3y10x2−xy−3y2−5x+3y