次の関数 $f(x)$ を積分する問題です。 (1) $f(x) = \frac{16}{x^2 \sqrt{x+4}}$ (2) $f(x) = \frac{x+2}{\sqrt[3]{x+1}+1}$解析学積分置換積分部分分数分解不定積分2025/7/191. 問題の内容次の関数 f(x)f(x)f(x) を積分する問題です。(1) f(x)=16x2x+4f(x) = \frac{16}{x^2 \sqrt{x+4}}f(x)=x2x+416(2) f(x)=x+2x+13+1f(x) = \frac{x+2}{\sqrt[3]{x+1}+1}f(x)=3x+1+1x+22. 解き方の手順(1)置換積分を行います。x+4=t2x+4 = t^2x+4=t2 とおくと、x=t2−4x = t^2 - 4x=t2−4, dx=2tdtdx = 2t dtdx=2tdt となります。したがって、f(x)=16(t2−4)2t2=16(t2−4)2tf(x) = \frac{16}{(t^2-4)^2 \sqrt{t^2}} = \frac{16}{(t^2-4)^2 t}f(x)=(t2−4)2t216=(t2−4)2t16∫f(x)dx=∫16(t2−4)2t2tdt=32∫1(t2−4)2dt=32∫1(t−2)2(t+2)2dt\int f(x) dx = \int \frac{16}{(t^2-4)^2 t} 2t dt = 32 \int \frac{1}{(t^2-4)^2} dt = 32 \int \frac{1}{(t-2)^2(t+2)^2} dt∫f(x)dx=∫(t2−4)2t162tdt=32∫(t2−4)21dt=32∫(t−2)2(t+2)21dt1(t−2)2(t+2)2=At−2+B(t−2)2+Ct+2+D(t+2)2\frac{1}{(t-2)^2 (t+2)^2} = \frac{A}{t-2} + \frac{B}{(t-2)^2} + \frac{C}{t+2} + \frac{D}{(t+2)^2}(t−2)2(t+2)21=t−2A+(t−2)2B+t+2C+(t+2)2Dとおき部分分数分解すると、1(t−2)2(t+2)2=1/16(t−2)2+1/16(t+2)2−1/32t−2+1/32t+2\frac{1}{(t-2)^2 (t+2)^2} = \frac{1/16}{(t-2)^2} + \frac{1/16}{(t+2)^2} - \frac{1/32}{t-2} + \frac{1/32}{t+2}(t−2)2(t+2)21=(t−2)21/16+(t+2)21/16−t−21/32+t+21/3232∫1(t2−4)2dt=32(∫1/16(t−2)2+1/16(t+2)2−1/32t−2+1/32t+2dt)32 \int \frac{1}{(t^2-4)^2} dt = 32 (\int \frac{1/16}{(t-2)^2} + \frac{1/16}{(t+2)^2} - \frac{1/32}{t-2} + \frac{1/32}{t+2} dt)32∫(t2−4)21dt=32(∫(t−2)21/16+(t+2)21/16−t−21/32+t+21/32dt)=32(−1/16t−2−1/16t+2−132ln∣t−2∣+132ln∣t+2∣)+C= 32 (\frac{-1/16}{t-2} - \frac{1/16}{t+2} - \frac{1}{32} \ln|t-2| + \frac{1}{32} \ln|t+2|) + C=32(t−2−1/16−t+21/16−321ln∣t−2∣+321ln∣t+2∣)+C=−2t−2−2t+2−ln∣t−2∣+ln∣t+2∣+C= - \frac{2}{t-2} - \frac{2}{t+2} - \ln|t-2| + \ln|t+2| + C=−t−22−t+22−ln∣t−2∣+ln∣t+2∣+C=−2(t+2)+2(t−2)t2−4+ln∣t+2t−2∣+C= - \frac{2(t+2) + 2(t-2)}{t^2-4} + \ln \left| \frac{t+2}{t-2} \right| + C=−t2−42(t+2)+2(t−2)+lnt−2t+2+C=−4tt2−4+ln∣t+2t−2∣+C= - \frac{4t}{t^2-4} + \ln \left| \frac{t+2}{t-2} \right| + C=−t2−44t+lnt−2t+2+C=−4x+4x+ln∣x+4+2x+4−2∣+C= - \frac{4 \sqrt{x+4}}{x} + \ln \left| \frac{\sqrt{x+4}+2}{\sqrt{x+4}-2} \right| + C=−x4x+4+lnx+4−2x+4+2+C(2)x+1=t3x+1 = t^3x+1=t3とおくと、x=t3−1x = t^3 - 1x=t3−1, dx=3t2dtdx = 3t^2 dtdx=3t2dt∫f(x)dx=∫t3−1+2t+13t2dt=∫t3+1t+13t2dt=∫(t+1)(t2−t+1)t+13t2dt\int f(x) dx = \int \frac{t^3 - 1 + 2}{t+1} 3t^2 dt = \int \frac{t^3 + 1}{t+1} 3t^2 dt = \int \frac{(t+1)(t^2 - t + 1)}{t+1} 3t^2 dt∫f(x)dx=∫t+1t3−1+23t2dt=∫t+1t3+13t2dt=∫t+1(t+1)(t2−t+1)3t2dt=∫3t2(t2−t+1)dt=∫(3t4−3t3+3t2)dt=35t5−34t4+t3+C= \int 3t^2(t^2-t+1) dt = \int (3t^4 - 3t^3 + 3t^2) dt = \frac{3}{5}t^5 - \frac{3}{4} t^4 + t^3 + C=∫3t2(t2−t+1)dt=∫(3t4−3t3+3t2)dt=53t5−43t4+t3+C=35(x+1)5/3−34(x+1)4/3+x+1+C= \frac{3}{5}(x+1)^{5/3} - \frac{3}{4} (x+1)^{4/3} + x+1 + C=53(x+1)5/3−43(x+1)4/3+x+1+C3. 最終的な答え(1) ∫16x2x+4dx=−4x+4x+ln∣x+4+2x+4−2∣+C\int \frac{16}{x^2 \sqrt{x+4}} dx = - \frac{4 \sqrt{x+4}}{x} + \ln \left| \frac{\sqrt{x+4}+2}{\sqrt{x+4}-2} \right| + C∫x2x+416dx=−x4x+4+lnx+4−2x+4+2+C(2) ∫x+2x+13+1dx=35(x+1)5/3−34(x+1)4/3+x+1+C\int \frac{x+2}{\sqrt[3]{x+1}+1} dx = \frac{3}{5}(x+1)^{5/3} - \frac{3}{4} (x+1)^{4/3} + x+1 + C∫3x+1+1x+2dx=53(x+1)5/3−43(x+1)4/3+x+1+C