画像に書かれた問題は、総和の計算です。具体的には、$\sum_{k=1}^{n} (2k+1)^2$ を計算する問題です。ただし、$n$の値は画像からは判断できません。ここでは$n$の場合の一般的な式を導出します。

代数学総和シグマ数式展開公式適用
2025/7/19

1. 問題の内容

画像に書かれた問題は、総和の計算です。具体的には、k=1n(2k+1)2\sum_{k=1}^{n} (2k+1)^2 を計算する問題です。ただし、nnの値は画像からは判断できません。ここではnnの場合の一般的な式を導出します。

2. 解き方の手順

まず、(2k+1)2(2k+1)^2を展開します。
(2k+1)2=4k2+4k+1(2k+1)^2 = 4k^2 + 4k + 1
次に、総和の性質を利用して、各項ごとに総和を計算します。
k=1n(2k+1)2=k=1n(4k2+4k+1)=4k=1nk2+4k=1nk+k=1n1\sum_{k=1}^{n} (2k+1)^2 = \sum_{k=1}^{n} (4k^2 + 4k + 1) = 4\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1
ここで、以下の公式を利用します。
k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
k=1n1=n\sum_{k=1}^{n} 1 = n
これらの公式を代入します。
4k=1nk2+4k=1nk+k=1n1=4n(n+1)(2n+1)6+4n(n+1)2+n4\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 4\cdot\frac{n(n+1)(2n+1)}{6} + 4\cdot\frac{n(n+1)}{2} + n
式を整理します。
2n(n+1)(2n+1)3+2n(n+1)+n=2n(n+1)(2n+1)+6n(n+1)+3n3\frac{2n(n+1)(2n+1)}{3} + 2n(n+1) + n = \frac{2n(n+1)(2n+1) + 6n(n+1) + 3n}{3}
さらに整理します。
n[2(n+1)(2n+1)+6(n+1)+3]3=n[2(2n2+3n+1)+6n+6+3]3=n(4n2+6n+2+6n+9)3=n(4n2+12n+11)3\frac{n[2(n+1)(2n+1) + 6(n+1) + 3]}{3} = \frac{n[2(2n^2+3n+1) + 6n + 6 + 3]}{3} = \frac{n(4n^2 + 6n + 2 + 6n + 9)}{3} = \frac{n(4n^2 + 12n + 11)}{3}

3. 最終的な答え

k=1n(2k+1)2=n(4n2+12n+11)3\sum_{k=1}^{n} (2k+1)^2 = \frac{n(4n^2 + 12n + 11)}{3}

「代数学」の関連問題

$x$ の不等式 $a(x-1) \le 2a$ の解を求める。

不等式一次不等式場合分け実数
2025/7/20

与えられた6つの問題を解きます。 (1) $-6 - 4^2 \times \frac{1}{8}$ を計算する。 (2) $7a - b - 5(a - 2b)$ を計算する。 (3) $\sqrt...

四則演算文字式の計算平方根の計算一次方程式連立方程式二次方程式因数分解
2025/7/20

与えられた等式を満たす行列 $A$ を求めます。等式は次の通りです。 $ A \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix} = 3 \begin{pmatrix}...

線形代数行列線形変換ベクトル連立方程式
2025/7/20

行列 $A$ があり、ベクトル $\begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$ に $A$ をかけた結果が、ベクトル $\begin{pmatrix} 4 \\...

線形代数行列ベクトル連立方程式
2025/7/20

2次関数 $y = -2x^2 + 3x - 4$ の $-1 \le x \le 1$ における最大値と最小値を求めよ。

二次関数最大値最小値平方完成
2025/7/20

与えられた行列とベクトルの積を、3つのベクトルの線形結合として表現する問題です。 行列 $\begin{pmatrix} 3 & 5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ と...

線形代数行列ベクトル線形結合
2025/7/20

与えられた4x4の正方行列の4乗を計算する問題です。行列は $ \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0...

行列行列の累乗対角行列
2025/7/20

$x + \frac{2}{x} = 3$ のとき、以下の式の値をそれぞれ求めよ。 (1) $x^2 + \frac{4}{x^2}$ (2) $x^3 + \frac{8}{x^3}$ (3) $x...

代数式の計算分数式展開3次式2次式
2025/7/20

4辺の長さの和が16である長方形ABCDにおいて、辺BCの長さを$x$とし、長方形ABCDの面積を$y$とする。 (1) $y$を$x$の式で表しなさい。 (2) $y \geq 10$となる$x$の...

二次関数二次不等式長方形面積
2025/7/20

与えられた3次正方行列の2乗を計算する問題です。行列を $A$ とすると、$A^2 = A \times A$ を計算します。 与えられた行列は $ A = \begin{pmatrix} 0 & -...

行列行列の積線形代数
2025/7/20