次の不定積分を計算します。 $\int \frac{x}{(1+x)\sqrt{x^2 - x + 1}} dx$解析学不定積分置換積分積分2025/7/19## (7) の問題1. 問題の内容次の不定積分を計算します。∫x(1+x)x2−x+1dx\int \frac{x}{(1+x)\sqrt{x^2 - x + 1}} dx∫(1+x)x2−x+1xdx2. 解き方の手順x=1tx = \frac{1}{t}x=t1 と置換します。すると dx=−1t2dtdx = -\frac{1}{t^2}dtdx=−t21dt となります。∫x(1+x)x2−x+1dx=∫1t(1+1t)1t2−1t+1(−1t2)dt\int \frac{x}{(1+x)\sqrt{x^2 - x + 1}} dx = \int \frac{\frac{1}{t}}{(1+\frac{1}{t})\sqrt{\frac{1}{t^2} - \frac{1}{t} + 1}} (-\frac{1}{t^2}) dt∫(1+x)x2−x+1xdx=∫(1+t1)t21−t1+1t1(−t21)dt=∫1t(t+1t)1−t+t2t2(−1t2)dt=∫1t(t+1t)1−t+t2∣t∣(−1t2)dt= \int \frac{\frac{1}{t}}{(\frac{t+1}{t})\sqrt{\frac{1-t+t^2}{t^2}}} (-\frac{1}{t^2}) dt = \int \frac{\frac{1}{t}}{(\frac{t+1}{t})\frac{\sqrt{1-t+t^2}}{|t|}} (-\frac{1}{t^2}) dt =∫(tt+1)t21−t+t2t1(−t21)dt=∫(tt+1)∣t∣1−t+t2t1(−t21)dtここで、x>0x > 0x>0 、つまり t>0t > 0t>0 のとき、∣t∣=t|t| = t∣t∣=t となるので=∫1(t+11)1−t+t21(−1t2)1tdt=∫1t+111−t+t2(−1t)dt = \int \frac{1}{(\frac{t+1}{1})\frac{\sqrt{1-t+t^2}}{1}} (-\frac{1}{t^2}) \frac{1}{t} dt = \int \frac{1}{t+1} \frac{1}{\sqrt{1-t+t^2}} (-\frac{1}{t}) dt=∫(1t+1)11−t+t21(−t21)t1dt=∫t+111−t+t21(−t1)dt=−∫1(t+1)t2−t+1dt= -\int \frac{1}{(t+1)\sqrt{t^2-t+1}}dt=−∫(t+1)t2−t+11dt次に、t+1=1ut+1 = \frac{1}{u}t+1=u1 と置換すると、t=1u−1=1−uut = \frac{1}{u} - 1 = \frac{1-u}{u}t=u1−1=u1−u、dt=−1u2dudt = -\frac{1}{u^2}dudt=−u21du となります。−∫1(t+1)t2−t+1dt=−∫11u(1−uu)2−1−uu+1(−1u2)du-\int \frac{1}{(t+1)\sqrt{t^2-t+1}}dt = -\int \frac{1}{\frac{1}{u} \sqrt{(\frac{1-u}{u})^2 - \frac{1-u}{u} + 1}} (-\frac{1}{u^2}) du−∫(t+1)t2−t+11dt=−∫u1(u1−u)2−u1−u+11(−u21)du=∫11u1−2u+u2−u(1−u)+u2u2(1u2)du=∫11u1−3u+3u2u(1u2)du= \int \frac{1}{\frac{1}{u} \sqrt{\frac{1-2u+u^2 - u(1-u) + u^2}{u^2}}} (\frac{1}{u^2}) du = \int \frac{1}{\frac{1}{u} \frac{\sqrt{1-3u+3u^2}}{u}} (\frac{1}{u^2}) du=∫u1u21−2u+u2−u(1−u)+u21(u21)du=∫u1u1−3u+3u21(u21)du=∫u23u2−3u+11u2du=∫13u2−3u+1du=13∫1u2−u+13du= \int \frac{u^2}{\sqrt{3u^2 - 3u + 1}} \frac{1}{u^2} du = \int \frac{1}{\sqrt{3u^2 - 3u + 1}} du = \frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{u^2 - u + \frac{1}{3}}}du=∫3u2−3u+1u2u21du=∫3u2−3u+11du=31∫u2−u+311du=13∫1(u−12)2+13−14du=13∫1(u−12)2+112du= \frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{(u - \frac{1}{2})^2 + \frac{1}{3} - \frac{1}{4}}}du = \frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{(u-\frac{1}{2})^2 + \frac{1}{12}}}du=31∫(u−21)2+31−411du=31∫(u−21)2+1211duw=u−12w = u - \frac{1}{2}w=u−21 とすると、dw=dudw = dudw=du となり=13∫1w2+112dw=13sinh−1(w112)+C= \frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{w^2 + \frac{1}{12}}} dw = \frac{1}{\sqrt{3}} \sinh^{-1} ( \frac{w}{\frac{1}{\sqrt{12}}} ) + C=31∫w2+1211dw=31sinh−1(121w)+C=13sinh−1(12w)+C=13sinh−1(12(u−12))+C=13sinh−1(12(1t+1−12))+C= \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12} w) + C = \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(u-\frac{1}{2})) + C = \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(\frac{1}{t+1} - \frac{1}{2})) + C=31sinh−1(12w)+C=31sinh−1(12(u−21))+C=31sinh−1(12(t+11−21))+C=13sinh−1(12(11x+1−12))+C=13sinh−1(12(x1+x−12))+C= \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(\frac{1}{\frac{1}{x}+1} - \frac{1}{2})) + C = \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(\frac{x}{1+x} - \frac{1}{2})) + C=31sinh−1(12(x1+11−21))+C=31sinh−1(12(1+xx−21))+C=13sinh−1(12(2x−(1+x)2(1+x)))+C=13sinh−1(12(x−12(1+x)))+C=13sinh−1(3(x−1)1+x)+C= \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(\frac{2x-(1+x)}{2(1+x)})) + C = \frac{1}{\sqrt{3}} \sinh^{-1} (\sqrt{12}(\frac{x-1}{2(1+x)})) + C = \frac{1}{\sqrt{3}} \sinh^{-1} ( \frac{\sqrt{3}(x-1)}{1+x}) + C=31sinh−1(12(2(1+x)2x−(1+x)))+C=31sinh−1(12(2(1+x)x−1))+C=31sinh−1(1+x3(x−1))+C3. 最終的な答え∫x(1+x)x2−x+1dx=13sinh−1(3(x−1)x+1)+C\int \frac{x}{(1+x)\sqrt{x^2 - x + 1}} dx = \frac{1}{\sqrt{3}} \sinh^{-1} (\frac{\sqrt{3}(x-1)}{x+1}) + C∫(1+x)x2−x+1xdx=31sinh−1(x+13(x−1))+C## (8) の問題1. 問題の内容次の不定積分を計算します。∫1(1+x)2+x−x2dx\int \frac{1}{(1+x)\sqrt{2+x-x^2}} dx∫(1+x)2+x−x21dx2. 解き方の手順2+x−x2=−(x2−x−2)=−((x−12)2−14−2)=−((x−12)2−94)=94−(x−12)22+x-x^2 = -(x^2 - x - 2) = -( (x - \frac{1}{2})^2 - \frac{1}{4} - 2 ) = -( (x - \frac{1}{2})^2 - \frac{9}{4}) = \frac{9}{4} - (x-\frac{1}{2})^2 2+x−x2=−(x2−x−2)=−((x−21)2−41−2)=−((x−21)2−49)=49−(x−21)2x+1=32sin(θ)+12+1=32sin(θ)+32 x+1 = \frac{3}{2} \sin(\theta) + \frac{1}{2} + 1 = \frac{3}{2} \sin(\theta) + \frac{3}{2}x+1=23sin(θ)+21+1=23sin(θ)+23x=1tx = \frac{1}{t}x=t1と置換すると、dx=−1t2dtdx = -\frac{1}{t^2} dtdx=−t21dt。∫1(1+x)2+x−x2dx=∫1(1+1t)2+1t−1t2(−1t2)dt\int \frac{1}{(1+x)\sqrt{2+x-x^2}} dx = \int \frac{1}{(1+\frac{1}{t})\sqrt{2+\frac{1}{t}-\frac{1}{t^2}}} (-\frac{1}{t^2}) dt∫(1+x)2+x−x21dx=∫(1+t1)2+t1−t211(−t21)dt=∫1(t+1t)2t2+t−1t2(−1t2)dt=∫1t+1t2t2+t−1∣t∣(−1t2)dt=∫t2(t+1)2t2+t−1(−1t2)dt=−∫1(t+1)2t2+t−1dt= \int \frac{1}{(\frac{t+1}{t})\sqrt{\frac{2t^2+t-1}{t^2}}} (-\frac{1}{t^2}) dt = \int \frac{1}{\frac{t+1}{t} \frac{\sqrt{2t^2+t-1}}{|t|}}(-\frac{1}{t^2}) dt = \int \frac{t^2}{(t+1)\sqrt{2t^2+t-1}} (-\frac{1}{t^2})dt = -\int \frac{1}{(t+1)\sqrt{2t^2+t-1}} dt=∫(tt+1)t22t2+t−11(−t21)dt=∫tt+1∣t∣2t2+t−11(−t21)dt=∫(t+1)2t2+t−1t2(−t21)dt=−∫(t+1)2t2+t−11dt3. 最終的な答え解法が不明なため、解答できません。