$x = \frac{2}{\sqrt{3} + \sqrt{2}}$、 $y = \frac{2}{\sqrt{3} - \sqrt{2}}$ のとき、$x^2 + y^2$ の値を求めよ。代数学式の計算有理化平方根展開2025/7/191. 問題の内容x=23+2x = \frac{2}{\sqrt{3} + \sqrt{2}}x=3+22、 y=23−2y = \frac{2}{\sqrt{3} - \sqrt{2}}y=3−22 のとき、x2+y2x^2 + y^2x2+y2 の値を求めよ。2. 解き方の手順まず、xxxとyyyの分母を有理化します。x=23+2=2(3−2)(3+2)(3−2)=2(3−2)3−2=2(3−2)x = \frac{2}{\sqrt{3} + \sqrt{2}} = \frac{2(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} = \frac{2(\sqrt{3} - \sqrt{2})}{3 - 2} = 2(\sqrt{3} - \sqrt{2})x=3+22=(3+2)(3−2)2(3−2)=3−22(3−2)=2(3−2)y=23−2=2(3+2)(3−2)(3+2)=2(3+2)3−2=2(3+2)y = \frac{2}{\sqrt{3} - \sqrt{2}} = \frac{2(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \frac{2(\sqrt{3} + \sqrt{2})}{3 - 2} = 2(\sqrt{3} + \sqrt{2})y=3−22=(3−2)(3+2)2(3+2)=3−22(3+2)=2(3+2)次に、x2x^2x2とy2y^2y2を計算します。x2=[2(3−2)]2=4(3−2)2=4(3−26+2)=4(5−26)=20−86x^2 = [2(\sqrt{3} - \sqrt{2})]^2 = 4(\sqrt{3} - \sqrt{2})^2 = 4(3 - 2\sqrt{6} + 2) = 4(5 - 2\sqrt{6}) = 20 - 8\sqrt{6}x2=[2(3−2)]2=4(3−2)2=4(3−26+2)=4(5−26)=20−86y2=[2(3+2)]2=4(3+2)2=4(3+26+2)=4(5+26)=20+86y^2 = [2(\sqrt{3} + \sqrt{2})]^2 = 4(\sqrt{3} + \sqrt{2})^2 = 4(3 + 2\sqrt{6} + 2) = 4(5 + 2\sqrt{6}) = 20 + 8\sqrt{6}y2=[2(3+2)]2=4(3+2)2=4(3+26+2)=4(5+26)=20+86最後に、x2+y2x^2 + y^2x2+y2を計算します。x2+y2=(20−86)+(20+86)=40x^2 + y^2 = (20 - 8\sqrt{6}) + (20 + 8\sqrt{6}) = 40x2+y2=(20−86)+(20+86)=403. 最終的な答え40