与えられた積分を計算します。 $\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx$解析学積分置換積分三角関数部分分数分解2025/7/191. 問題の内容与えられた積分を計算します。∫1xx−1x+1dx\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx∫x1x+1x−1dx2. 解き方の手順まず、x=secθx = \sec \thetax=secθ と置換します。すると、dx=secθtanθdθdx = \sec \theta \tan \theta d\thetadx=secθtanθdθ となります。積分は次のようになります。∫1secθsecθ−1secθ+1secθtanθdθ=∫tanθsecθ−1secθ+1dθ\int \frac{1}{\sec \theta} \sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} \sec \theta \tan \theta d\theta = \int \tan \theta \sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} d\theta∫secθ1secθ+1secθ−1secθtanθdθ=∫tanθsecθ+1secθ−1dθ次に、secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}secθ=cosθ1 を代入します。∫tanθ1−cosθ1+cosθdθ=∫tanθ2sin2(θ/2)2cos2(θ/2)dθ=∫tanθtan(θ/2)dθ\int \tan \theta \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} d\theta = \int \tan \theta \sqrt{\frac{2 \sin^2 (\theta/2)}{2 \cos^2 (\theta/2)}} d\theta = \int \tan \theta \tan (\theta/2) d\theta∫tanθ1+cosθ1−cosθdθ=∫tanθ2cos2(θ/2)2sin2(θ/2)dθ=∫tanθtan(θ/2)dθtanθ=2tan(θ/2)1−tan2(θ/2)\tan \theta = \frac{2 \tan(\theta/2)}{1-\tan^2 (\theta/2)}tanθ=1−tan2(θ/2)2tan(θ/2) を用いて、∫2tan2(θ/2)1−tan2(θ/2)dθ\int \frac{2 \tan^2 (\theta/2)}{1 - \tan^2(\theta/2)} d\theta∫1−tan2(θ/2)2tan2(θ/2)dθt=tan(θ/2)t = \tan(\theta/2)t=tan(θ/2) と置くと、θ=2arctant\theta = 2 \arctan tθ=2arctant であり、dθ=21+t2dtd\theta = \frac{2}{1+t^2} dtdθ=1+t22dt となります。したがって、積分は、∫2t21−t221+t2dt=∫4t2(1−t2)(1+t2)dt=∫4t21−t4dt\int \frac{2t^2}{1-t^2} \frac{2}{1+t^2} dt = \int \frac{4t^2}{(1-t^2)(1+t^2)} dt = \int \frac{4t^2}{1-t^4} dt∫1−t22t21+t22dt=∫(1−t2)(1+t2)4t2dt=∫1−t44t2dt部分分数分解をすると、4t21−t4=A1−t+B1+t+C1−it+D1+it\frac{4t^2}{1-t^4} = \frac{A}{1-t} + \frac{B}{1+t} + \frac{C}{1-it} + \frac{D}{1+it}1−t44t2=1−tA+1+tB+1−itC+1+itDとなります。しかし、この積分は難しそうです。別の方法を試します。x−1x+1=t\sqrt{\frac{x-1}{x+1}} = tx+1x−1=t と置換します。x−1x+1=t2\frac{x-1}{x+1} = t^2x+1x−1=t2x−1=t2(x+1)=t2x+t2x-1 = t^2(x+1) = t^2 x + t^2x−1=t2(x+1)=t2x+t2x(1−t2)=1+t2x(1-t^2) = 1+t^2x(1−t2)=1+t2x=1+t21−t2x = \frac{1+t^2}{1-t^2}x=1−t21+t2dx=2t(1−t2)−(1+t2)(−2t)(1−t2)2dt=2t−2t3+2t+2t3(1−t2)2dt=4t(1−t2)2dtdx = \frac{2t(1-t^2) - (1+t^2)(-2t)}{(1-t^2)^2} dt = \frac{2t - 2t^3 + 2t + 2t^3}{(1-t^2)^2} dt = \frac{4t}{(1-t^2)^2} dtdx=(1−t2)22t(1−t2)−(1+t2)(−2t)dt=(1−t2)22t−2t3+2t+2t3dt=(1−t2)24tdt積分は∫1−t21+t2t4t(1−t2)2dt=∫4t2(1+t2)(1−t2)dt=∫4t21−t4dt\int \frac{1-t^2}{1+t^2} t \frac{4t}{(1-t^2)^2} dt = \int \frac{4t^2}{(1+t^2)(1-t^2)} dt = \int \frac{4t^2}{1-t^4} dt∫1+t21−t2t(1−t2)24tdt=∫(1+t2)(1−t2)4t2dt=∫1−t44t2dtこれは、先ほどと同じ結果です。4t21−t4=At+B1−t2+Ct+D1+t2\frac{4t^2}{1-t^4} = \frac{A t + B}{1-t^2} + \frac{C t + D}{1+t^2}1−t44t2=1−t2At+B+1+t2Ct+D4t2=(At+B)(1+t2)+(Ct+D)(1−t2)=At+At3+B+Bt2+Ct−Ct3+D−Dt24t^2 = (A t + B)(1+t^2) + (Ct + D)(1-t^2) = At + At^3 + B + Bt^2 + Ct - Ct^3 + D - Dt^24t2=(At+B)(1+t2)+(Ct+D)(1−t2)=At+At3+B+Bt2+Ct−Ct3+D−Dt2=(A−C)t3+(B−D)t2+(A+C)t+(B+D)= (A-C)t^3 + (B-D)t^2 + (A+C)t + (B+D)=(A−C)t3+(B−D)t2+(A+C)t+(B+D)したがって、A−C=0A-C=0A−C=0, B−D=4B-D=4B−D=4, A+C=0A+C=0A+C=0, B+D=0B+D=0B+D=0.A=C=0A = C = 0A=C=0.B−D=4B-D = 4B−D=4 かつ B+D=0B+D = 0B+D=0 より、2B=42B = 42B=4, B=2B=2B=2, D=−2D=-2D=−2.よって、4t21−t4=21−t2−21+t2\frac{4t^2}{1-t^4} = \frac{2}{1-t^2} - \frac{2}{1+t^2}1−t44t2=1−t22−1+t22.∫4t21−t4dt=∫21−t2dt−∫21+t2dt=∫11+t+11−tdt−2arctant=ln∣1+t∣−ln∣1−t∣−2arctant+C=ln∣1+t1−t∣−2arctant+C\int \frac{4t^2}{1-t^4} dt = \int \frac{2}{1-t^2} dt - \int \frac{2}{1+t^2} dt = \int \frac{1}{1+t} + \frac{1}{1-t} dt - 2 \arctan t = \ln |1+t| - \ln |1-t| - 2 \arctan t + C = \ln \left| \frac{1+t}{1-t} \right| - 2 \arctan t + C∫1−t44t2dt=∫1−t22dt−∫1+t22dt=∫1+t1+1−t1dt−2arctant=ln∣1+t∣−ln∣1−t∣−2arctant+C=ln1−t1+t−2arctant+C.t=x−1x+1t = \sqrt{\frac{x-1}{x+1}}t=x+1x−1ln∣1+x−1x+11−x−1x+1∣−2arctanx−1x+1+C=ln∣x+1+x−1x+1−x−1∣−2arctanx−1x+1+C\ln \left| \frac{1 + \sqrt{\frac{x-1}{x+1}}}{1 - \sqrt{\frac{x-1}{x+1}}} \right| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + C = \ln \left| \frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} \right| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + Cln1−x+1x−11+x+1x−1−2arctanx+1x−1+C=lnx+1−x−1x+1+x−1−2arctanx+1x−1+C=ln∣(x+1+x−1)2(x+1)−(x−1)∣−2arctanx−1x+1+C=ln∣x+1+x−1+2x2−12∣−2arctanx−1x+1+C=ln∣x+x2−1∣−2arctanx−1x+1+C= \ln \left| \frac{(\sqrt{x+1} + \sqrt{x-1})^2}{(x+1) - (x-1)} \right| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + C = \ln \left| \frac{x+1 + x-1 + 2\sqrt{x^2-1}}{2} \right| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + C = \ln |x + \sqrt{x^2-1}| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + C=ln(x+1)−(x−1)(x+1+x−1)2−2arctanx+1x−1+C=ln2x+1+x−1+2x2−1−2arctanx+1x−1+C=ln∣x+x2−1∣−2arctanx+1x−1+C3. 最終的な答えln∣x+x2−1∣−2arctanx−1x+1+C\ln |x + \sqrt{x^2-1}| - 2 \arctan \sqrt{\frac{x-1}{x+1}} + Cln∣x+x2−1∣−2arctanx+1x−1+C