$\log_3 3\sqrt{3}$ の値を求めよ。

代数学対数指数計算
2025/7/20

1. 問題の内容

log333\log_3 3\sqrt{3} の値を求めよ。

2. 解き方の手順

まず、3\sqrt{3}を指数の形に書き換えます。3=31/2\sqrt{3} = 3^{1/2}です。
したがって、33=331/23\sqrt{3} = 3 \cdot 3^{1/2} となります。
次に、指数の法則 aman=am+na^m \cdot a^n = a^{m+n} を使って、331/23 \cdot 3^{1/2} をまとめます。
331/2=3131/2=31+1/2=33/23 \cdot 3^{1/2} = 3^1 \cdot 3^{1/2} = 3^{1 + 1/2} = 3^{3/2} となります。
したがって、log333=log333/2\log_3 3\sqrt{3} = \log_3 3^{3/2} となります。
対数の性質 logaax=x\log_a a^x = x を使って計算します。
log333/2=32\log_3 3^{3/2} = \frac{3}{2}

3. 最終的な答え

32\frac{3}{2}

「代数学」の関連問題

与えられた等式を満たす行列 $A$ を求めます。等式は次の通りです。 $ A \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix} = 3 \begin{pmatrix}...

線形代数行列線形変換ベクトル連立方程式
2025/7/20

行列 $A$ があり、ベクトル $\begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$ に $A$ をかけた結果が、ベクトル $\begin{pmatrix} 4 \\...

線形代数行列ベクトル連立方程式
2025/7/20

2次関数 $y = -2x^2 + 3x - 4$ の $-1 \le x \le 1$ における最大値と最小値を求めよ。

二次関数最大値最小値平方完成
2025/7/20

与えられた行列とベクトルの積を、3つのベクトルの線形結合として表現する問題です。 行列 $\begin{pmatrix} 3 & 5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ と...

線形代数行列ベクトル線形結合
2025/7/20

与えられた4x4の正方行列の4乗を計算する問題です。行列は $ \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0...

行列行列の累乗対角行列
2025/7/20

$x + \frac{2}{x} = 3$ のとき、以下の式の値をそれぞれ求めよ。 (1) $x^2 + \frac{4}{x^2}$ (2) $x^3 + \frac{8}{x^3}$ (3) $x...

代数式の計算分数式展開3次式2次式
2025/7/20

4辺の長さの和が16である長方形ABCDにおいて、辺BCの長さを$x$とし、長方形ABCDの面積を$y$とする。 (1) $y$を$x$の式で表しなさい。 (2) $y \geq 10$となる$x$の...

二次関数二次不等式長方形面積
2025/7/20

与えられた3次正方行列の2乗を計算する問題です。行列を $A$ とすると、$A^2 = A \times A$ を計算します。 与えられた行列は $ A = \begin{pmatrix} 0 & -...

行列行列の積線形代数
2025/7/20

与えられた2次正方行列 $A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$ の2乗 $A^2$ と3乗 $A^3$ を計算する問題です。

行列行列の計算行列の累乗
2025/7/20

与えられた3つの行列の積を計算する問題です。行列はそれぞれ $\begin{pmatrix} -2 & 1 \\ -2 & -1 \end{pmatrix}$, $\begin{pmatrix} 1 ...

行列行列の積線形代数
2025/7/20