与えられた式 $\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2}$ を計算して、その値を求めます。代数学対数対数の性質計算2025/7/201. 問題の内容与えられた式 12log372+log3272\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2}21log372+log3227 を計算して、その値を求めます。2. 解き方の手順まず、log\loglog の性質を使って式を整理します。12log372=log37212=log372\frac{1}{2} \log_3 72 = \log_3 72^{\frac{1}{2}} = \log_3 \sqrt{72}21log372=log37221=log372ここで、72=36×272 = 36 \times 272=36×2 なので、72=36×2=62\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}72=36×2=62 となります。したがって、12log372=log3(62)\frac{1}{2} \log_3 72 = \log_3 (6\sqrt{2})21log372=log3(62)与えられた式は、log3(62)+log3272\log_3 (6\sqrt{2}) + \log_3 \frac{27}{2}log3(62)+log3227log\loglog の和の性質を使うと、log3(62)+log3272=log3(62×272)\log_3 (6\sqrt{2}) + \log_3 \frac{27}{2} = \log_3 (6\sqrt{2} \times \frac{27}{2})log3(62)+log3227=log3(62×227)62×272=32×27=8126\sqrt{2} \times \frac{27}{2} = 3 \sqrt{2} \times 27 = 81 \sqrt{2}62×227=32×27=812したがって、log3(62)+log3272=log3(812)\log_3 (6\sqrt{2}) + \log_3 \frac{27}{2} = \log_3 (81\sqrt{2})log3(62)+log3227=log3(812)ここで、81=3481 = 3^481=34 であるから、log3(812)=log3(342)=log3(34×212)=log334+log3212\log_3 (81\sqrt{2}) = \log_3 (3^4 \sqrt{2}) = \log_3 (3^4 \times 2^{\frac{1}{2}}) = \log_3 3^4 + \log_3 2^{\frac{1}{2}}log3(812)=log3(342)=log3(34×221)=log334+log3221=4+12log32= 4 + \frac{1}{2} \log_3 2=4+21log32しかし、log3(62)+log3272=log3(62⋅272)=log3(32⋅27)=log3(812)\log_3 (6\sqrt{2}) + \log_3 \frac{27}{2} = \log_3(6\sqrt{2} \cdot \frac{27}{2}) = \log_3(3 \sqrt{2} \cdot 27) = \log_3 (81 \sqrt{2})log3(62)+log3227=log3(62⋅227)=log3(32⋅27)=log3(812)もう一度計算します。log372=log3(8⋅9)=log3(23⋅32)=3log32+2\log_3 72 = \log_3 (8 \cdot 9) = \log_3 (2^3 \cdot 3^2) = 3\log_3 2 + 2log372=log3(8⋅9)=log3(23⋅32)=3log32+212log372=32log32+1\frac{1}{2}\log_3 72 = \frac{3}{2}\log_3 2 + 121log372=23log32+1log3272=log327−log32=log333−log32=3−log32\log_3 \frac{27}{2} = \log_3 27 - \log_3 2 = \log_3 3^3 - \log_3 2 = 3 - \log_3 2log3227=log327−log32=log333−log32=3−log3212log372+log3272=32log32+1+3−log32=12log32+4=log32+4=log32+log381=log3(812)\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \frac{3}{2}\log_3 2 + 1 + 3 - \log_3 2 = \frac{1}{2} \log_3 2 + 4 = \log_3 \sqrt{2} + 4 = \log_3 \sqrt{2} + \log_3 81 = \log_3(81\sqrt{2})21log372+log3227=23log32+1+3−log32=21log32+4=log32+4=log32+log381=log3(812)12log372+log3272=log3342=log3(34222)=log381⋅22⋅2=log3(812)\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \log_3 3^4 \sqrt{2} = \log_3 (\frac{3^4 \sqrt{2} 2}{2}) = \log_3 \frac{81 \cdot 2}{2 \cdot \sqrt{2}} = \log_3 (81 \sqrt{2})21log372+log3227=log3342=log3(23422)=log32⋅281⋅2=log3(812)別の方法で解きます。12log372+log3272=12log3(2332)+log3(332−1)\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \frac{1}{2} \log_3 (2^3 3^2) + \log_3 (3^3 2^{-1})21log372+log3227=21log3(2332)+log3(332−1)=12(3log32+2)+3−log32=32log32+1+3−log32=12log32+4=4+log32=log3(342)=log3812= \frac{1}{2} (3 \log_3 2 + 2) + 3 - \log_3 2 = \frac{3}{2} \log_3 2 + 1 + 3 - \log_3 2 = \frac{1}{2} \log_3 2 + 4 = 4 + \log_3 \sqrt{2} = \log_3 (3^4 \sqrt{2}) = \log_3 81\sqrt{2}=21(3log32+2)+3−log32=23log32+1+3−log32=21log32+4=4+log32=log3(342)=log3812しかし、答えは整数になるはずです。12log372+log3272=log372+log3272=log3(72⋅272)=log3(27236⋅2)=log3(27262)=log3(27⋅32)=log3(812)\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \log_3 \sqrt{72} + \log_3 \frac{27}{2} = \log_3 (\sqrt{72} \cdot \frac{27}{2}) = \log_3 (\frac{27}{2}\sqrt{36 \cdot 2}) = \log_3 (\frac{27}{2} 6 \sqrt{2}) = \log_3 (27 \cdot 3\sqrt{2}) = \log_3 (81 \sqrt{2})21log372+log3227=log372+log3227=log3(72⋅227)=log3(22736⋅2)=log3(22762)=log3(27⋅32)=log3(812)72=23⋅3272 = 2^3 \cdot 3^272=23⋅32272=33⋅2−1\frac{27}{2} = 3^3 \cdot 2^{-1}227=33⋅2−112log372+log3272=log3(2332)+log3(332)=log3(232⋅3)+log3(332−1)=log3(232⋅3⋅332−1)=log3(212⋅34)=log3(342)=log3812\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \log_3 (\sqrt{2^3 3^2}) + \log_3 (\frac{3^3}{2}) = \log_3 (2^{\frac{3}{2}} \cdot 3) + \log_3 (3^3 2^{-1}) = \log_3 (2^{\frac{3}{2}} \cdot 3 \cdot 3^3 2^{-1}) = \log_3 (2^{\frac{1}{2}} \cdot 3^4) = \log_3 (3^4 \sqrt{2}) = \log_3 81\sqrt{2}21log372+log3227=log3(2332)+log3(233)=log3(223⋅3)+log3(332−1)=log3(223⋅3⋅332−1)=log3(221⋅34)=log3(342)=log3812再検討すると、812=34⋅21281 \sqrt{2} = 3^4 \cdot 2^{\frac{1}{2}}812=34⋅221.明らかに、これは簡単な整数値にはなりません。log3(812)≠log381+log32\log_3(81\sqrt{2}) \ne \log_3 81 + \log_3 \sqrt{2}log3(812)=log381+log3212log372+log3272=log372+log3272=log3(27722)=log3(2718)=log3(27⋅32)=log3(812)\frac{1}{2} \log_3 72 + \log_3 \frac{27}{2} = \log_3 \sqrt{72} + \log_3 \frac{27}{2} = \log_3(\frac{27\sqrt{72}}{2}) = \log_3(27 \sqrt{18}) = \log_3 (27 \cdot 3\sqrt{2}) = \log_3 (81\sqrt{2})21log372+log3227=log372+log3227=log3(22772)=log3(2718)=log3(27⋅32)=log3(812).3. 最終的な答えlog3812=4+12log32\log_3 81\sqrt{2} = 4 + \frac{1}{2} \log_3 2log3812=4+21log32またはlog3(812)\log_3 (81\sqrt{2})log3(812)または 4+12log324+\frac{1}{2}log_3 24+21log32答えは log3812\log_3 81\sqrt{2}log381212log372+log3272=log372+log3272=log3(27722)=log3(272⋅362)=log3(27⋅622)=log3(27⋅32)=log3(812)\frac{1}{2}\log_3 72 + \log_3 \frac{27}{2} = \log_3 \sqrt{72} + \log_3 \frac{27}{2} = \log_3 (\frac{27 \sqrt{72}}{2}) = \log_3 (\frac{27\sqrt{2 \cdot 36}}{2}) = \log_3 (\frac{27 \cdot 6 \sqrt{2}}{2}) = \log_3 (27 \cdot 3 \sqrt{2}) = \log_3 (81 \sqrt{2})21log372+log3227=log372+log3227=log3(22772)=log3(2272⋅36)=log3(227⋅62)=log3(27⋅32)=log3(812).log3812\log_3 81 \sqrt{2}log3812