はい、承知いたしました。画像にある不定積分の問題を解きます。解析学不定積分積分三角関数双曲線関数2025/7/20はい、承知いたしました。画像にある不定積分の問題を解きます。**1. 問題の内容**次の10個の不定積分を求めます。(1) ∫1−xx3dx\int \frac{1-x}{x^3} dx∫x31−xdx(2) ∫(1+x)2xdx\int \frac{(1+\sqrt{x})^2}{x} dx∫x(1+x)2dx(3) ∫(x+x3)dx\int (\sqrt{x} + \sqrt[3]{x}) dx∫(x+3x)dx(4) ∫x+1x2+4dx\int \frac{x+1}{x^2+4} dx∫x2+4x+1dx(5) ∫(sinx+cosx)2dx\int (\sin x + \cos x)^2 dx∫(sinx+cosx)2dx(6) ∫sin5xcos3xdx\int \sin 5x \cos 3x dx∫sin5xcos3xdx(7) ∫tan2xdx\int \tan^2 x dx∫tan2xdx(8) ∫sinhxdx\int \sinh x dx∫sinhxdx(9) ∫coshxdx\int \cosh x dx∫coshxdx(10) ∫tanhxdx\int \tanh x dx∫tanhxdx**2. 解き方の手順**(1) ∫1−xx3dx\int \frac{1-x}{x^3} dx∫x31−xdx1−xx3=1x3−xx3=x−3−x−2\frac{1-x}{x^3} = \frac{1}{x^3} - \frac{x}{x^3} = x^{-3} - x^{-2}x31−x=x31−x3x=x−3−x−2∫(x−3−x−2)dx=x−2−2−x−1−1+C=−12x2+1x+C\int (x^{-3} - x^{-2}) dx = \frac{x^{-2}}{-2} - \frac{x^{-1}}{-1} + C = -\frac{1}{2x^2} + \frac{1}{x} + C∫(x−3−x−2)dx=−2x−2−−1x−1+C=−2x21+x1+C(2) ∫(1+x)2xdx\int \frac{(1+\sqrt{x})^2}{x} dx∫x(1+x)2dx(1+x)2=1+2x+x(1+\sqrt{x})^2 = 1 + 2\sqrt{x} + x(1+x)2=1+2x+x(1+x)2x=1x+2xx+xx=1x+2x+1\frac{(1+\sqrt{x})^2}{x} = \frac{1}{x} + \frac{2\sqrt{x}}{x} + \frac{x}{x} = \frac{1}{x} + \frac{2}{\sqrt{x}} + 1x(1+x)2=x1+x2x+xx=x1+x2+1∫(1x+2x+1)dx=∫(1x+2x−1/2+1)dx=ln∣x∣+2⋅x1/21/2+x+C=ln∣x∣+4x+x+C\int (\frac{1}{x} + \frac{2}{\sqrt{x}} + 1) dx = \int (\frac{1}{x} + 2x^{-1/2} + 1) dx = \ln|x| + 2 \cdot \frac{x^{1/2}}{1/2} + x + C = \ln|x| + 4\sqrt{x} + x + C∫(x1+x2+1)dx=∫(x1+2x−1/2+1)dx=ln∣x∣+2⋅1/2x1/2+x+C=ln∣x∣+4x+x+C(3) ∫(x+x3)dx\int (\sqrt{x} + \sqrt[3]{x}) dx∫(x+3x)dx∫(x+x3)dx=∫(x1/2+x1/3)dx=x3/23/2+x4/34/3+C=23x3/2+34x4/3+C\int (\sqrt{x} + \sqrt[3]{x}) dx = \int (x^{1/2} + x^{1/3}) dx = \frac{x^{3/2}}{3/2} + \frac{x^{4/3}}{4/3} + C = \frac{2}{3}x^{3/2} + \frac{3}{4}x^{4/3} + C∫(x+3x)dx=∫(x1/2+x1/3)dx=3/2x3/2+4/3x4/3+C=32x3/2+43x4/3+C(4) ∫x+1x2+4dx\int \frac{x+1}{x^2+4} dx∫x2+4x+1dx∫x+1x2+4dx=∫xx2+4dx+∫1x2+4dx\int \frac{x+1}{x^2+4} dx = \int \frac{x}{x^2+4} dx + \int \frac{1}{x^2+4} dx∫x2+4x+1dx=∫x2+4xdx+∫x2+41dx∫xx2+4dx=12∫2xx2+4dx=12ln(x2+4)\int \frac{x}{x^2+4} dx = \frac{1}{2} \int \frac{2x}{x^2+4} dx = \frac{1}{2} \ln(x^2+4)∫x2+4xdx=21∫x2+42xdx=21ln(x2+4)∫1x2+4dx=∫14(x24+1)dx=14∫1(x2)2+1dx\int \frac{1}{x^2+4} dx = \int \frac{1}{4(\frac{x^2}{4}+1)} dx = \frac{1}{4} \int \frac{1}{(\frac{x}{2})^2+1} dx∫x2+41dx=∫4(4x2+1)1dx=41∫(2x)2+11dxu=x2,du=12dx⇒dx=2duu = \frac{x}{2}, du = \frac{1}{2} dx \Rightarrow dx = 2 duu=2x,du=21dx⇒dx=2du14∫1u2+12du=12arctan(u)=12arctan(x2)\frac{1}{4} \int \frac{1}{u^2+1} 2 du = \frac{1}{2} \arctan(u) = \frac{1}{2} \arctan(\frac{x}{2})41∫u2+112du=21arctan(u)=21arctan(2x)∫x+1x2+4dx=12ln(x2+4)+12arctan(x2)+C\int \frac{x+1}{x^2+4} dx = \frac{1}{2} \ln(x^2+4) + \frac{1}{2} \arctan(\frac{x}{2}) + C∫x2+4x+1dx=21ln(x2+4)+21arctan(2x)+C(5) ∫(sinx+cosx)2dx\int (\sin x + \cos x)^2 dx∫(sinx+cosx)2dx(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx=1+sin2x(\sin x + \cos x)^2 = \sin^2 x + 2 \sin x \cos x + \cos^2 x = 1 + 2 \sin x \cos x = 1 + \sin 2x(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx=1+sin2x∫(1+sin2x)dx=x−12cos2x+C\int (1 + \sin 2x) dx = x - \frac{1}{2} \cos 2x + C∫(1+sin2x)dx=x−21cos2x+C(6) ∫sin5xcos3xdx\int \sin 5x \cos 3x dx∫sin5xcos3xdxsinAcosB=12[sin(A+B)+sin(A−B)]\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]sinAcosB=21[sin(A+B)+sin(A−B)]sin5xcos3x=12[sin(8x)+sin(2x)]\sin 5x \cos 3x = \frac{1}{2}[\sin(8x) + \sin(2x)]sin5xcos3x=21[sin(8x)+sin(2x)]∫sin5xcos3xdx=12∫(sin8x+sin2x)dx=12(−18cos8x−12cos2x)+C=−116cos8x−14cos2x+C\int \sin 5x \cos 3x dx = \frac{1}{2} \int (\sin 8x + \sin 2x) dx = \frac{1}{2} (-\frac{1}{8} \cos 8x - \frac{1}{2} \cos 2x) + C = -\frac{1}{16} \cos 8x - \frac{1}{4} \cos 2x + C∫sin5xcos3xdx=21∫(sin8x+sin2x)dx=21(−81cos8x−21cos2x)+C=−161cos8x−41cos2x+C(7) ∫tan2xdx\int \tan^2 x dx∫tan2xdxtan2x=sec2x−1\tan^2 x = \sec^2 x - 1tan2x=sec2x−1∫tan2xdx=∫(sec2x−1)dx=tanx−x+C\int \tan^2 x dx = \int (\sec^2 x - 1) dx = \tan x - x + C∫tan2xdx=∫(sec2x−1)dx=tanx−x+C(8) ∫sinhxdx=coshx+C\int \sinh x dx = \cosh x + C∫sinhxdx=coshx+C(9) ∫coshxdx=sinhx+C\int \cosh x dx = \sinh x + C∫coshxdx=sinhx+C(10) ∫tanhxdx\int \tanh x dx∫tanhxdxtanhx=sinhxcoshx\tanh x = \frac{\sinh x}{\cosh x}tanhx=coshxsinhx∫tanhxdx=∫sinhxcoshxdx\int \tanh x dx = \int \frac{\sinh x}{\cosh x} dx∫tanhxdx=∫coshxsinhxdxu=coshx,du=sinhxdxu = \cosh x, du = \sinh x dxu=coshx,du=sinhxdx∫1udu=ln∣u∣+C=ln∣coshx∣+C\int \frac{1}{u} du = \ln|u| + C = \ln|\cosh x| + C∫u1du=ln∣u∣+C=ln∣coshx∣+C**3. 最終的な答え**(1) −12x2+1x+C-\frac{1}{2x^2} + \frac{1}{x} + C−2x21+x1+C(2) ln∣x∣+4x+x+C\ln|x| + 4\sqrt{x} + x + Cln∣x∣+4x+x+C(3) 23x3/2+34x4/3+C\frac{2}{3}x^{3/2} + \frac{3}{4}x^{4/3} + C32x3/2+43x4/3+C(4) 12ln(x2+4)+12arctan(x2)+C\frac{1}{2} \ln(x^2+4) + \frac{1}{2} \arctan(\frac{x}{2}) + C21ln(x2+4)+21arctan(2x)+C(5) x−12cos2x+Cx - \frac{1}{2} \cos 2x + Cx−21cos2x+C(6) −116cos8x−14cos2x+C-\frac{1}{16} \cos 8x - \frac{1}{4} \cos 2x + C−161cos8x−41cos2x+C(7) tanx−x+C\tan x - x + Ctanx−x+C(8) coshx+C\cosh x + Ccoshx+C(9) sinhx+C\sinh x + Csinhx+C(10) ln∣coshx∣+C\ln|\cosh x| + Cln∣coshx∣+C