一次関数 $y = 5x - 2$ のグラフの傾きと切片を求める問題です。

代数学一次関数傾き切片グラフ
2025/7/20

1. 問題の内容

一次関数 y=5x2y = 5x - 2 のグラフの傾きと切片を求める問題です。

2. 解き方の手順

一次関数の一般的な形は y=ax+by = ax + b で表されます。ここで、aa は傾き、bb は切片です。
与えられた関数 y=5x2y = 5x - 2 と比較すると、a=5a = 5b=2b = -2 となります。

3. 最終的な答え

傾き: 5
切片: -2

「代数学」の関連問題

与えられた連立方程式を解いて、$x$と$y$の値を求める問題です。 連立方程式は以下の通りです。 $ \begin{cases} y = 2x + 8 \\ 3x + 4y = -1 \end{cas...

連立方程式代入法一次方程式
2025/7/20

与えられた4つの2次式を因数分解する問題です。具体的には、以下の式を因数分解します。 (1) $x^2 + 4x + 3$ (2) $x^2 - 7x + 6$ (3) $x^2 - 2x - 3$ ...

因数分解二次式二次方程式
2025/7/20

与えられた3つの式を因数分解する問題です。 (1) $x^2 + 4xy + 4y^2$ (2) $x^2 - 10xy + 25y^2$ (3) $16x^2 - 9y^2$

因数分解二次式多項式
2025/7/20

与えられた6つの式を因数分解します。 (1) $x^2+12x+36$ (2) $x^2-10x+25$ (3) $x^2-4$ (4) $9x^2+12x+4$ (5) $4x^2-4x+1$ (6...

因数分解二次式展開
2025/7/20

与えられた連立不等式 $4x - y < 8$ $2x + 3y \geq 3$ を満たす領域を求める問題です。

連立不等式領域不等式グラフ
2025/7/20

与えられた6つの式を因数分解する問題です。

因数分解式変形共通因数
2025/7/20

与えられた連立一次不等式を解きます。連立不等式は次の通りです。 $ \begin{cases} x - 2y \le 4 \\ 3x + y > 6 \end{cases} $

連立不等式不等式一次不等式領域
2025/7/20

与えられた一次方程式 $6x + y = -\frac{2}{3}$ のx切片とy切片の座標を求める問題です。

一次方程式x切片y切片座標
2025/7/20

与えられた5つの連立一次不等式を解く問題です。

連立一次不等式領域グラフ
2025/7/20

与えられた式 $(x+2)^2(x-2)^2$ を展開し、簡単にします。

式の展開因数分解多項式
2025/7/20