問題は、漸化式を利用して不定積分 $\int \frac{dx}{(x^2+1)^2}$ を求めることです。解析学積分不定積分部分積分漸化式arctan2025/7/201. 問題の内容問題は、漸化式を利用して不定積分 ∫dx(x2+1)2\int \frac{dx}{(x^2+1)^2}∫(x2+1)2dx を求めることです。2. 解き方の手順部分積分を用いて漸化式を導出します。In=∫dx(x2+1)nI_n = \int \frac{dx}{(x^2+1)^n}In=∫(x2+1)ndx とおきます。In=∫1(x2+1)ndx=∫x2+1(x2+1)ndx−∫x2(x2+1)ndx=∫1(x2+1)n−1dx−∫x2(x2+1)ndx=In−1−∫x2(x2+1)ndxI_n = \int \frac{1}{(x^2+1)^n} dx = \int \frac{x^2+1}{(x^2+1)^n} dx - \int \frac{x^2}{(x^2+1)^n} dx = \int \frac{1}{(x^2+1)^{n-1}}dx - \int \frac{x^2}{(x^2+1)^n} dx = I_{n-1} - \int \frac{x^2}{(x^2+1)^n} dxIn=∫(x2+1)n1dx=∫(x2+1)nx2+1dx−∫(x2+1)nx2dx=∫(x2+1)n−11dx−∫(x2+1)nx2dx=In−1−∫(x2+1)nx2dxここで ∫x2(x2+1)ndx\int \frac{x^2}{(x^2+1)^n} dx∫(x2+1)nx2dx を部分積分を用いて変形します。u=x,dv=x(x2+1)ndxu = x, dv = \frac{x}{(x^2+1)^n} dxu=x,dv=(x2+1)nxdx とすると, du=dx,v=∫x(x2+1)ndx=12∫(x2+1)−nd(x2+1)=12(x2+1)−n+1−n+1=12(1−n)(x2+1)n−1du = dx, v = \int \frac{x}{(x^2+1)^n} dx = \frac{1}{2} \int (x^2+1)^{-n} d(x^2+1) = \frac{1}{2} \frac{(x^2+1)^{-n+1}}{-n+1} = \frac{1}{2(1-n)(x^2+1)^{n-1}}du=dx,v=∫(x2+1)nxdx=21∫(x2+1)−nd(x2+1)=21−n+1(x2+1)−n+1=2(1−n)(x2+1)n−11よって,∫x2(x2+1)ndx=uv−∫vdu=x2(1−n)(x2+1)n−1−∫12(1−n)(x2+1)n−1dx=x2(1−n)(x2+1)n−1−12(1−n)In−1\int \frac{x^2}{(x^2+1)^n} dx = uv - \int v du = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \int \frac{1}{2(1-n)(x^2+1)^{n-1}} dx = \frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)} I_{n-1}∫(x2+1)nx2dx=uv−∫vdu=2(1−n)(x2+1)n−1x−∫2(1−n)(x2+1)n−11dx=2(1−n)(x2+1)n−1x−2(1−n)1In−1これを InI_nIn の式に代入するとIn=In−1−[x2(1−n)(x2+1)n−1−12(1−n)In−1]=In−1−x2(1−n)(x2+1)n−1+12(1−n)In−1=2−2n+12(1−n)In−1−x2(1−n)(x2+1)n−1I_n = I_{n-1} - [\frac{x}{2(1-n)(x^2+1)^{n-1}} - \frac{1}{2(1-n)} I_{n-1}] = I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}} + \frac{1}{2(1-n)} I_{n-1} = \frac{2-2n+1}{2(1-n)} I_{n-1} - \frac{x}{2(1-n)(x^2+1)^{n-1}}In=In−1−[2(1−n)(x2+1)n−1x−2(1−n)1In−1]=In−1−2(1−n)(x2+1)n−1x+2(1−n)1In−1=2(1−n)2−2n+1In−1−2(1−n)(x2+1)n−1xIn=3−2n2(1−n)In−1+x2(n−1)(x2+1)n−1I_n = \frac{3-2n}{2(1-n)} I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=2(1−n)3−2nIn−1+2(n−1)(x2+1)n−1xしたがってIn=2n−32n−2In−1+x2(n−1)(x2+1)n−1I_n = \frac{2n-3}{2n-2} I_{n-1} + \frac{x}{2(n-1)(x^2+1)^{n-1}}In=2n−22n−3In−1+2(n−1)(x2+1)n−1x求める積分は I2=∫dx(x2+1)2I_2 = \int \frac{dx}{(x^2+1)^2}I2=∫(x2+1)2dx なので, n=2n=2n=2 を代入するとI2=2∗2−32∗2−2I2−1+x2(2−1)(x2+1)2−1=12I1+x2(x2+1)I_2 = \frac{2*2-3}{2*2-2} I_{2-1} + \frac{x}{2(2-1)(x^2+1)^{2-1}} = \frac{1}{2} I_1 + \frac{x}{2(x^2+1)}I2=2∗2−22∗2−3I2−1+2(2−1)(x2+1)2−1x=21I1+2(x2+1)xここで I1=∫dxx2+1=arctanxI_1 = \int \frac{dx}{x^2+1} = \arctan{x}I1=∫x2+1dx=arctanxI2=12arctanx+x2(x2+1)+CI_2 = \frac{1}{2} \arctan{x} + \frac{x}{2(x^2+1)} + CI2=21arctanx+2(x2+1)x+C3. 最終的な答え∫dx(x2+1)2=12arctanx+x2(x2+1)+C\int \frac{dx}{(x^2+1)^2} = \frac{1}{2} \arctan{x} + \frac{x}{2(x^2+1)} + C∫(x2+1)2dx=21arctanx+2(x2+1)x+C