不定積分 $\int \frac{x+3}{(x^2+2x+2)^2} dx$ を求めよ。解析学不定積分置換積分三角関数積分2025/7/201. 問題の内容不定積分 ∫x+3(x2+2x+2)2dx\int \frac{x+3}{(x^2+2x+2)^2} dx∫(x2+2x+2)2x+3dx を求めよ。2. 解き方の手順まず、x2+2x+2=(x+1)2+1x^2 + 2x + 2 = (x+1)^2 + 1x2+2x+2=(x+1)2+1 と変形する。次に、x+1=tanθx+1 = \tan \thetax+1=tanθ と置換する。すると、dx=sec2θdθdx = \sec^2 \theta d\thetadx=sec2θdθ となる。また、x+3=(x+1)+2=tanθ+2x+3 = (x+1) + 2 = \tan \theta + 2x+3=(x+1)+2=tanθ+2 である。従って、積分は以下のようになる。∫x+3(x2+2x+2)2dx=∫tanθ+2(tan2θ+1)2sec2θdθ=∫tanθ+2(sec2θ)2sec2θdθ=∫tanθ+2sec2θdθ=∫(tanθ+2)cos2θdθ\int \frac{x+3}{(x^2+2x+2)^2} dx = \int \frac{\tan \theta + 2}{(\tan^2 \theta + 1)^2} \sec^2 \theta d\theta = \int \frac{\tan \theta + 2}{(\sec^2 \theta)^2} \sec^2 \theta d\theta = \int \frac{\tan \theta + 2}{\sec^2 \theta} d\theta = \int (\tan \theta + 2) \cos^2 \theta d\theta∫(x2+2x+2)2x+3dx=∫(tan2θ+1)2tanθ+2sec2θdθ=∫(sec2θ)2tanθ+2sec2θdθ=∫sec2θtanθ+2dθ=∫(tanθ+2)cos2θdθ=∫tanθcos2θdθ+∫2cos2θdθ=∫sinθcosθdθ+∫(1+cos2θ)dθ=∫12sin2θdθ+∫(1+cos2θ)dθ= \int \tan \theta \cos^2 \theta d\theta + \int 2\cos^2 \theta d\theta = \int \sin \theta \cos \theta d\theta + \int (1 + \cos 2\theta) d\theta = \int \frac{1}{2} \sin 2\theta d\theta + \int (1 + \cos 2\theta) d\theta=∫tanθcos2θdθ+∫2cos2θdθ=∫sinθcosθdθ+∫(1+cos2θ)dθ=∫21sin2θdθ+∫(1+cos2θ)dθ=−14cos2θ+θ+12sin2θ+C=−14cos2θ+θ+sinθcosθ+C= -\frac{1}{4} \cos 2\theta + \theta + \frac{1}{2} \sin 2\theta + C = -\frac{1}{4} \cos 2\theta + \theta + \sin \theta \cos \theta + C=−41cos2θ+θ+21sin2θ+C=−41cos2θ+θ+sinθcosθ+Cここで、cos2θ=1−tan2θ1+tan2θ\cos 2\theta = \frac{1-\tan^2 \theta}{1 + \tan^2 \theta}cos2θ=1+tan2θ1−tan2θ、sinθ=tanθ1+tan2θ\sin \theta = \frac{\tan \theta}{\sqrt{1+\tan^2 \theta}}sinθ=1+tan2θtanθ、cosθ=11+tan2θ\cos \theta = \frac{1}{\sqrt{1+\tan^2 \theta}}cosθ=1+tan2θ1 であることを用いる。θ=arctan(x+1)\theta = \arctan(x+1)θ=arctan(x+1) であるから、tanθ=x+1\tan \theta = x+1tanθ=x+1cos2θ=1−(x+1)21+(x+1)2=1−(x2+2x+1)1+x2+2x+1=−x2−2xx2+2x+2\cos 2\theta = \frac{1 - (x+1)^2}{1 + (x+1)^2} = \frac{1 - (x^2+2x+1)}{1 + x^2 + 2x + 1} = \frac{-x^2 - 2x}{x^2+2x+2}cos2θ=1+(x+1)21−(x+1)2=1+x2+2x+11−(x2+2x+1)=x2+2x+2−x2−2xsinθ=x+11+(x+1)2=x+1x2+2x+2\sin \theta = \frac{x+1}{\sqrt{1+(x+1)^2}} = \frac{x+1}{\sqrt{x^2+2x+2}}sinθ=1+(x+1)2x+1=x2+2x+2x+1cosθ=1x2+2x+2\cos \theta = \frac{1}{\sqrt{x^2+2x+2}}cosθ=x2+2x+21従って、−14cos2θ=−14⋅−x2−2xx2+2x+2=x2+2x4(x2+2x+2)-\frac{1}{4} \cos 2\theta = -\frac{1}{4} \cdot \frac{-x^2 - 2x}{x^2+2x+2} = \frac{x^2 + 2x}{4(x^2+2x+2)}−41cos2θ=−41⋅x2+2x+2−x2−2x=4(x2+2x+2)x2+2xsinθcosθ=x+1x2+2x+2\sin \theta \cos \theta = \frac{x+1}{x^2+2x+2}sinθcosθ=x2+2x+2x+1したがって、積分はx2+2x4(x2+2x+2)+arctan(x+1)+x+1x2+2x+2+C=x2+2x+4(x+1)4(x2+2x+2)+arctan(x+1)+C=x2+6x+44(x2+2x+2)+arctan(x+1)+C\frac{x^2 + 2x}{4(x^2+2x+2)} + \arctan(x+1) + \frac{x+1}{x^2+2x+2} + C = \frac{x^2 + 2x + 4(x+1)}{4(x^2+2x+2)} + \arctan(x+1) + C = \frac{x^2 + 6x + 4}{4(x^2+2x+2)} + \arctan(x+1) + C4(x2+2x+2)x2+2x+arctan(x+1)+x2+2x+2x+1+C=4(x2+2x+2)x2+2x+4(x+1)+arctan(x+1)+C=4(x2+2x+2)x2+6x+4+arctan(x+1)+C別解:∫x+3(x2+2x+2)2dx=∫12(2x+2)+2(x2+2x+2)2dx=12∫2x+2(x2+2x+2)2dx+2∫1(x2+2x+2)2dx=12∫2x+2(x2+2x+2)2dx+2∫1((x+1)2+1)2dx\int \frac{x+3}{(x^2+2x+2)^2} dx = \int \frac{\frac{1}{2}(2x+2) + 2}{(x^2+2x+2)^2} dx = \frac{1}{2} \int \frac{2x+2}{(x^2+2x+2)^2} dx + 2 \int \frac{1}{(x^2+2x+2)^2} dx = \frac{1}{2} \int \frac{2x+2}{(x^2+2x+2)^2} dx + 2 \int \frac{1}{((x+1)^2+1)^2} dx∫(x2+2x+2)2x+3dx=∫(x2+2x+2)221(2x+2)+2dx=21∫(x2+2x+2)22x+2dx+2∫(x2+2x+2)21dx=21∫(x2+2x+2)22x+2dx+2∫((x+1)2+1)21dxu=x2+2x+2u = x^2+2x+2u=x2+2x+2 とすると、du=(2x+2)dxdu = (2x+2)dxdu=(2x+2)dx であるから、12∫duu2=12(−1u)=−12(x2+2x+2)\frac{1}{2} \int \frac{du}{u^2} = \frac{1}{2} (-\frac{1}{u}) = -\frac{1}{2(x^2+2x+2)}21∫u2du=21(−u1)=−2(x2+2x+2)1x+1=tanθx+1 = \tan \thetax+1=tanθ とすると、dx=sec2θdθdx = \sec^2 \theta d\thetadx=sec2θdθ であるから、2∫1((x+1)2+1)2dx=2∫1(tan2θ+1)2sec2θdθ=2∫sec2θsec4θdθ=2∫cos2θdθ=2∫1+cos2θ2dθ=∫(1+cos2θ)dθ=θ+12sin2θ=θ+sinθcosθ2 \int \frac{1}{((x+1)^2+1)^2} dx = 2 \int \frac{1}{(\tan^2\theta + 1)^2} \sec^2 \theta d\theta = 2 \int \frac{\sec^2 \theta}{\sec^4 \theta} d\theta = 2 \int \cos^2 \theta d\theta = 2 \int \frac{1 + \cos 2\theta}{2} d\theta = \int (1 + \cos 2\theta) d\theta = \theta + \frac{1}{2} \sin 2\theta = \theta + \sin \theta \cos \theta2∫((x+1)2+1)21dx=2∫(tan2θ+1)21sec2θdθ=2∫sec4θsec2θdθ=2∫cos2θdθ=2∫21+cos2θdθ=∫(1+cos2θ)dθ=θ+21sin2θ=θ+sinθcosθ=arctan(x+1)+x+1x2+2x+2⋅1x2+2x+2=arctan(x+1)+x+1x2+2x+2= \arctan(x+1) + \frac{x+1}{\sqrt{x^2+2x+2}} \cdot \frac{1}{\sqrt{x^2+2x+2}} = \arctan(x+1) + \frac{x+1}{x^2+2x+2}=arctan(x+1)+x2+2x+2x+1⋅x2+2x+21=arctan(x+1)+x2+2x+2x+1よって、−12(x2+2x+2)+arctan(x+1)+x+1x2+2x+2+C=arctan(x+1)+2x+2−12(x2+2x+2)+C=arctan(x+1)+2x+12(x2+2x+2)+C-\frac{1}{2(x^2+2x+2)} + \arctan(x+1) + \frac{x+1}{x^2+2x+2} + C = \arctan(x+1) + \frac{2x+2-1}{2(x^2+2x+2)} + C = \arctan(x+1) + \frac{2x+1}{2(x^2+2x+2)} + C−2(x2+2x+2)1+arctan(x+1)+x2+2x+2x+1+C=arctan(x+1)+2(x2+2x+2)2x+2−1+C=arctan(x+1)+2(x2+2x+2)2x+1+C3. 最終的な答えarctan(x+1)+2x+12(x2+2x+2)+C\arctan(x+1) + \frac{2x+1}{2(x^2+2x+2)} + Carctan(x+1)+2(x2+2x+2)2x+1+C