兄は1500円、弟は500円を持って買い物に行った。兄は$a$円の本を買い、弟は$b$円のノートを買った。このとき、不等式 $1500 - a > 2(500 - b)$ はどんなことを表しているかを答える問題です。

代数学不等式一次不等式文章問題
2025/7/20

1. 問題の内容

兄は1500円、弟は500円を持って買い物に行った。兄はaa円の本を買い、弟はbb円のノートを買った。このとき、不等式 1500a>2(500b)1500 - a > 2(500 - b) はどんなことを表しているかを答える問題です。

2. 解き方の手順

まず、不等式の各部分の意味を考えます。
- 1500a1500 - a: 兄が本を買った残りのお金を表します。
- 500b500 - b: 弟がノートを買った残りのお金を表します。
- 2(500b)2(500 - b): 弟がノートを買った残りのお金の2倍を表します。
不等式 1500a>2(500b)1500 - a > 2(500 - b) は、兄の残りのお金が、弟の残りのお金の2倍より大きいことを意味します。

3. 最終的な答え

兄の残りのお金は、弟の残りのお金の2倍より多い。

「代数学」の関連問題

$e^{2k} = 2$ を満たす $k$ の値を求めます。

対数指数方程式
2025/7/20

$x^{-\frac{1}{2}} = \frac{8}{\sqrt{8}}$ を満たす $x$ を求めよ。

指数分数平方根方程式
2025/7/20

$x^{-1/2} = \frac{A}{\sqrt{8}}$ が与えられたとき、$x$ を求める問題。

指数方程式代数計算
2025/7/20

与えられた問題は、対数の差を計算する問題です。具体的には、$\log_2 18 - \log_2 72$ を計算します。

対数対数の性質計算
2025/7/20

与えられた数式 $(\frac{1}{2} \times 2^{\frac{2}{3}} \div \frac{1}{\sqrt{2}})^6$ を計算し、簡略化された形で答えを求める。

指数指数法則計算
2025/7/20

与えられた2次関数に関する以下の問題を解きます。 1. $f(x) = x^2 - 6x + 5$ の頂点の座標、軸の方程式、グラフの概形を求める。

二次関数平方完成頂点最大値交点
2025/7/20

関数 $h(x) = ax^2 + bx + c$ が点 $(1, -2)$ を通り、$h(0) = 3$ を満たすとき、$a$, $b$, $c$ の値を求める問題です。

二次関数関数の決定代入連立方程式
2025/7/20

ある列車が、長さ600mの鉄橋を渡り始めてから渡り終わるまでに30秒かかった。また、この列車が同じ速さで、その鉄橋の2倍の長さのトンネル(1200m)を通過するとき、トンネルに入り始めてから、出てしま...

連立方程式文章問題速さ距離時間
2025/7/20

与えられた連立不等式 $ \begin{cases} x - 2y \le 4 \\ 3x + y > 6 \end{cases} $ の解を求める問題です。

連立不等式不等式グラフ
2025/7/20

与えられた行列 $A$ で表される一次変換 $f(\vec{x}) = A\vec{x}$ によって、$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}...

線形代数一次変換行列ベクトル平面図形
2025/7/20