ある列車が、長さ600mの鉄橋を渡り始めてから渡り終わるまでに30秒かかった。また、この列車が同じ速さで、その鉄橋の2倍の長さのトンネル(1200m)を通過するとき、トンネルに入り始めてから、出てしまうまでに54秒かかった。列車の長さと速さをそれぞれ求める。

代数学連立方程式文章問題速さ距離時間
2025/7/20

1. 問題の内容

ある列車が、長さ600mの鉄橋を渡り始めてから渡り終わるまでに30秒かかった。また、この列車が同じ速さで、その鉄橋の2倍の長さのトンネル(1200m)を通過するとき、トンネルに入り始めてから、出てしまうまでに54秒かかった。列車の長さと速さをそれぞれ求める。

2. 解き方の手順

列車の長さを xx (m)、速さを vv (m/秒)とする。
鉄橋を渡る場合、列車が進む距離は鉄橋の長さと列車の長さを足したものであるから、以下の式が成り立つ。
600+x=30v600 + x = 30v
トンネルを通過する場合、列車が進む距離はトンネルの長さと列車の長さを足したものであるから、以下の式が成り立つ。
1200+x=54v1200 + x = 54v
これらの連立方程式を解く。
まず、最初の式からxxを求める。
x=30v600x = 30v - 600
これを二番目の式に代入すると、
1200+(30v600)=54v1200 + (30v - 600) = 54v
600+30v=54v600 + 30v = 54v
24v=60024v = 600
v=25v = 25
速さが25m/秒であることがわかったので、列車の長さを計算する。
x=30v600=30×25600=750600=150x = 30v - 600 = 30 \times 25 - 600 = 750 - 600 = 150
したがって、列車の長さは150m、速さは25m/秒である。

3. 最終的な答え

長さ: 150 m
速さ: 25 m/秒

「代数学」の関連問題

$f$ は平面ベクトルを $x$ 軸で折り返す変換、$g$ は直線 $y=x$ で折り返す変換である。 (1) ベクトル $\vec{e_2} = \begin{pmatrix} 0 \\ 1 \en...

線形代数ベクトル一次変換行列合成変換
2025/7/20

与えられた行列 $A$ に対して、正則行列 $P$ を求め、$P^{-1}AP$ が対角行列となるようにする。行列 $A$ は $ A = \begin{pmatrix} -5 & 6 & 4 \\ ...

線形代数行列固有値固有ベクトル対角化正則行列
2025/7/20

与えられた4次正方行列の行列式を計算し、$a$ に関する降べきの順に整理する問題です。行列は次の通りです。 $ \begin{pmatrix} a & 0 & 0 & b \\ b & a & 0 &...

行列式行列4次正方行列余因子展開計算
2025/7/20

行列 $A = \begin{pmatrix} 6 & -9 \\ 2 & -3 \end{pmatrix}$ で定まる1次変換を $f$ とする。このとき、以下の問いに答えよ。 (1) 点 $(1,...

線形代数行列一次変換逆像全単射行列式
2025/7/20

放物線 $y = x^2 + 2x - 3$ を、(1) $y$軸に関して対称移動、(2) 原点に関して対称移動させたときの放物線の方程式をそれぞれ求めます。

二次関数放物線対称移動座標変換
2025/7/20

与えられた2x2行列 $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ に対応する1次変換を $f$ とします。 以下の問題を解きます。 (1)...

線形代数行列1次変換逆像
2025/7/20

与えられた行列 $A = \begin{bmatrix} -2 & 3 & -4 \\ 4 & -3 & 8 \\ -4 & 3 & -4 \end{bmatrix}$ に対して、以下の問題を解きます...

行列余因子行列逆行列行列式
2025/7/20

与えられた2x2行列 $ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} $ に対応する一次変換 $f$ について、以下のものを求めます。 (1) 点(1, ...

線形代数一次変換行列逆像
2025/7/20

行列 $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ が正則かどうかを調べ、正則ならば逆行列 $A...

線形代数行列正則逆行列行列式余因子行列
2025/7/20

与えられた連立一次方程式を解く問題です。 連立一次方程式は、行列とベクトルを用いて以下のように表現されています。 $\begin{bmatrix} 1 & -3 & 2 & 1 \\ -2 & 6 &...

連立一次方程式行列線形代数行基本変形自由変数
2025/7/20