与えられた積分 $\int \frac{dx}{\sin x \cos^2 x}$ を計算します。解析学積分三角関数不定積分2025/8/61. 問題の内容与えられた積分 ∫dxsinxcos2x\int \frac{dx}{\sin x \cos^2 x}∫sinxcos2xdx を計算します。2. 解き方の手順まず、sinx\sin xsinxをsinxcosxcosx\frac{\sin x \cos x}{\cos x}cosxsinxcosxと書き換えます。∫dxsinxcos2x=∫dxsinxcosxcosxcos2x=∫cosxsinxcosxcos2xdx=∫cosxsinxcos3xdx\int \frac{dx}{\sin x \cos^2 x} = \int \frac{dx}{\frac{\sin x \cos x}{\cos x} \cos^2 x} = \int \frac{\cos x}{\sin x \cos x \cos^2 x}dx = \int \frac{\cos x}{\sin x \cos^3 x}dx∫sinxcos2xdx=∫cosxsinxcosxcos2xdx=∫sinxcosxcos2xcosxdx=∫sinxcos3xcosxdx次に、∫1sinxcos2xdx=∫1sinxcos2x⋅cosxcosxdx=∫cosxsinxcos3xdx\int \frac{1}{\sin x \cos^2 x} dx = \int \frac{1}{\sin x \cos^2 x} \cdot \frac{\cos x}{\cos x} dx = \int \frac{\cos x}{\sin x \cos^3 x} dx∫sinxcos2x1dx=∫sinxcos2x1⋅cosxcosxdx=∫sinxcos3xcosxdx∫dxsinxcos2x=∫sin2x+cos2xsinxcos2xdx\int \frac{dx}{\sin x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x} dx∫sinxcos2xdx=∫sinxcos2xsin2x+cos2xdx=∫sin2xsinxcos2xdx+∫cos2xsinxcos2xdx= \int \frac{\sin^2 x}{\sin x \cos^2 x} dx + \int \frac{\cos^2 x}{\sin x \cos^2 x} dx=∫sinxcos2xsin2xdx+∫sinxcos2xcos2xdx=∫sinxcos2xdx+∫1sinxdx= \int \frac{\sin x}{\cos^2 x} dx + \int \frac{1}{\sin x} dx=∫cos2xsinxdx+∫sinx1dx=∫sinxcos2xdx+∫cscxdx= \int \frac{\sin x}{\cos^2 x} dx + \int \csc x dx=∫cos2xsinxdx+∫cscxdxここで、u=cosxu = \cos xu=cosx とすると、du=−sinxdxdu = -\sin x dxdu=−sinxdx なので、∫sinxcos2xdx=∫−1u2du=1u+C=1cosx+C=secx+C\int \frac{\sin x}{\cos^2 x} dx = \int \frac{-1}{u^2} du = \frac{1}{u} + C = \frac{1}{\cos x} + C = \sec x + C∫cos2xsinxdx=∫u2−1du=u1+C=cosx1+C=secx+Cまた、∫cscxdx=ln∣cscx−cotx∣+C\int \csc x dx = \ln |\csc x - \cot x| + C∫cscxdx=ln∣cscx−cotx∣+Cしたがって、∫dxsinxcos2x=secx+ln∣cscx−cotx∣+C\int \frac{dx}{\sin x \cos^2 x} = \sec x + \ln |\csc x - \cot x| + C∫sinxcos2xdx=secx+ln∣cscx−cotx∣+C3. 最終的な答えsecx+ln∣cscx−cotx∣+C\sec x + \ln |\csc x - \cot x| + Csecx+ln∣cscx−cotx∣+C