問題文中の空欄「キ」、「クケ」、「コ」、「サ」、「シス」に入る数値を、選択肢から選びます。問題文の最初には、「キの整数部分を $a$ 、小数部分を $b$ とすると、$a$ はクケであり、$b$ は $log_{10}$ コであるから、$N$ の値はおよそコ × $10^{クケ}$ であり、$N$ は最高位の数字がサであるシス桁の整数である。」とあります。
2025/8/7
1. 問題の内容
問題文中の空欄「キ」、「クケ」、「コ」、「サ」、「シス」に入る数値を、選択肢から選びます。問題文の最初には、「キの整数部分を 、小数部分を とすると、 はクケであり、 は コであるから、 の値はおよそコ × であり、 は最高位の数字がサであるシス桁の整数である。」とあります。
2. 解き方の手順
まず、「カ」、「キ」の選択肢から、とします。
* より、整数部分 、小数部分 。よって、「クケ」は11です。
* より、。 となります。、 であることを利用すると、 は約 であると推定できます。したがって、「コ」は 2.86 (選択肢③) です。
* の値は、 となります。
* は最高位の数字が「サ」の「シス」桁の整数であることを見ます。 なので、 は 12桁の整数です。よって、「シス」は 12 です。
* 最高位の数字は 2 なので、「サ」は 2 です。
3. 最終的な答え
* キ: 11.4567 (選択肢⑤)
* クケ: 11
* コ: 2.86 (選択肢③)
* サ: 2
* シス: 12