与えられた式 $ab(a+b) + bc(b+c) + ca(c+a) + 2abc$ を因数分解する問題です。

代数学因数分解多項式
2025/5/13

1. 問題の内容

与えられた式 ab(a+b)+bc(b+c)+ca(c+a)+2abcab(a+b) + bc(b+c) + ca(c+a) + 2abc を因数分解する問題です。

2. 解き方の手順

まず、与えられた式を展開します。
ab(a+b)+bc(b+c)+ca(c+a)+2abc=a2b+ab2+b2c+bc2+c2a+ca2+2abcab(a+b) + bc(b+c) + ca(c+a) + 2abc = a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2 + 2abc
この式を aa について整理します。
a2b+ca2+ab2+2abc+bc2+b2c+c2a=(b+c)a2+(b2+2bc+c2)a+bc(b+c)a^2b + ca^2 + ab^2 + 2abc + bc^2 + b^2c + c^2a = (b+c)a^2 + (b^2+2bc+c^2)a + bc(b+c)
=(b+c)a2+(b+c)2a+bc(b+c)= (b+c)a^2 + (b+c)^2a + bc(b+c)
(b+c)(b+c) が共通因数なので、これでくくります。
(b+c)[a2+(b+c)a+bc]=(b+c)(a2+ab+ac+bc)(b+c)[a^2 + (b+c)a + bc] = (b+c)(a^2+ab+ac+bc)
次に、括弧の中の式を因数分解します。
a2+ab+ac+bc=a(a+b)+c(a+b)=(a+b)(a+c)a^2+ab+ac+bc = a(a+b) + c(a+b) = (a+b)(a+c)
したがって、
(b+c)(a+b)(a+c)=(a+b)(b+c)(c+a)(b+c)(a+b)(a+c) = (a+b)(b+c)(c+a)

3. 最終的な答え

(a+b)(b+c)(c+a)(a+b)(b+c)(c+a)

「代数学」の関連問題

(1) $-1 < t < 1$ を満たす実数 $t$ が与えられている。点 $(1, 0)$ を $(1-t^2, -2t)$ に、点 $(1, 1)$ を $(1+2t-t^2, 1-2t-t^2...

行列線形代数一次変換
2025/5/14

与えられた不等式 $4 + \frac{1}{5}(n-4) > \frac{1}{2}n$ を満たす最大の自然数 $n$ を求める問題です。

不等式一次不等式自然数解の範囲
2025/5/14

不等式 $4x + \frac{1}{x} \geq 4$ と $x + \frac{9}{x} \geq 6$ の両辺に $x$ を掛ける方法が考えられるが、それでは行き詰まってしまう。その理由を考...

不等式場合分け二次不等式実数の性質
2025/5/14

$x > 0$ のとき、次の不等式を証明し、等号が成り立つのはどのような時か? (1) $4x + \frac{1}{x} \geq 4$ (2) $(4x + \frac{1}{x})(x + \f...

不等式相加相乗平均数式変形
2025/5/14

与えられた分数の分母を有理化し、「エ」、「オ」、「カキ」に当てはまる数を求める問題です。分数は $\frac{1}{\sqrt{2}+\sqrt{5}-\sqrt{7}}$ であり、有理化後の形は $...

有理化平方根分数
2025/5/14

与えられた2つの二次関数について、それぞれの頂点の座標、x軸との交点、y軸との交点を求める問題です。

二次関数平方完成解の公式頂点x軸との交点y軸との交点
2025/5/14

与えられた条件から、以下の3つの一次関数の式を求める問題です。 1. $x$ が $x+1$ になるとき、$y$ が $y+2$ となり、かつ点 $(1, -1)$ を通る。

一次関数傾き切片方程式
2025/5/14

与えられた二次関数を平方完成する問題です。具体的には、以下の2つの関数を平方完成する必要があります。 1. $y = 2x^2 + 2x + 2$

二次関数平方完成
2025/5/14

与えられた点と傾きを持つ直線の方程式を求める問題です。 (1) 点$(2, -4)$を通り、傾きが$3$の直線 (2) 点$(-3, 1)$を通り、傾きが$-2$の直線

直線の方程式点傾斜式一次関数座標
2025/5/14

行列 $A = \begin{pmatrix} -4 & -13 \\ 1 & 3 \end{pmatrix}$ に対して、ケーリー・ハミルトンの定理を用いて $A^2$ と $A^3$ を求める。

行列ケーリー・ハミルトンの定理逆行列線形変換
2025/5/14