Let's solve the first inequality:
2x+33x<2 2x+33x−2<0 2x+33x−2(2x+3)<0 2x+33x−4x−6<0 2x+3−x−6<0 2x+3x+6>0 The critical points are x=−6 and x=−23. We consider the intervals (−∞,−6), (−6,−23) and (−23,∞). If x<−6, say x=−7, 2(−7)+3−7+6=−11−1=111>0. If −6<x<−23, say x=−2, 2(−2)+3−2+6=−14=−4<0. If x>−23, say x=0, 2(0)+30+6=36=2>0. So the solution to the first inequality is x<−6 or x>−23. Now let's solve the second inequality:
2x+33x>−2 2x+33x+2>0 2x+33x+2(2x+3)>0 2x+33x+4x+6>0 2x+37x+6>0 The critical points are x=−76 and x=−23. We consider the intervals (−∞,−23), (−23,−76) and (−76,∞). If x<−23, say x=−2, 2(−2)+37(−2)+6=−1−8=8>0. If −23<x<−76, say x=−1, 2(−1)+37(−1)+6=1−1=−1<0. If x>−76, say x=0, 2(0)+37(0)+6=36=2>0. So the solution to the second inequality is x<−23 or x>−76. Now we need to find the intersection of the two solutions:
x<−6 or x>−23 and x<−23 or x>−76. This means x<−6 or x>−76.