## 1. 問題の内容代数学二次方程式解と係数の関係式の計算2025/6/9##1. 問題の内容2次方程式 2x2−3x+8=02x^2 - 3x + 8 = 02x2−3x+8=0 の2つの解を α,β\alpha, \betaα,β とするとき、以下の式の値を求めよ。(1) α2β+αβ2\alpha^2\beta + \alpha\beta^2α2β+αβ2(2) α2+β2\alpha^2 + \beta^2α2+β2(3) βα+αβ\frac{\beta}{\alpha} + \frac{\alpha}{\beta}αβ+βα(4) α3+β3\alpha^3 + \beta^3α3+β3##2. 解き方の手順まず、解と係数の関係より、α+β=−−32=32\alpha + \beta = -\frac{-3}{2} = \frac{3}{2}α+β=−2−3=23αβ=82=4\alpha\beta = \frac{8}{2} = 4αβ=28=4これらを用いて、各問を解いていく。(1) α2β+αβ2=αβ(α+β)\alpha^2\beta + \alpha\beta^2 = \alpha\beta(\alpha + \beta)α2β+αβ2=αβ(α+β)=4×32=6= 4 \times \frac{3}{2} = 6=4×23=6(2) α2+β2=(α+β)2−2αβ\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\betaα2+β2=(α+β)2−2αβ=(32)2−2×4=94−8=9−324=−234= (\frac{3}{2})^2 - 2 \times 4 = \frac{9}{4} - 8 = \frac{9 - 32}{4} = -\frac{23}{4}=(23)2−2×4=49−8=49−32=−423(3) βα+αβ=β2+α2αβ\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\beta^2 + \alpha^2}{\alpha\beta}αβ+βα=αββ2+α2=α2+β2αβ=−2344=−2316= \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{-\frac{23}{4}}{4} = -\frac{23}{16}=αβα2+β2=4−423=−1623(4) α3+β3=(α+β)3−3αβ(α+β)\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)α3+β3=(α+β)3−3αβ(α+β)=(32)3−3×4×32=278−18=27−1448=−1178= (\frac{3}{2})^3 - 3 \times 4 \times \frac{3}{2} = \frac{27}{8} - 18 = \frac{27 - 144}{8} = -\frac{117}{8}=(23)3−3×4×23=827−18=827−144=−8117##3. 最終的な答え(1) α2β+αβ2=6\alpha^2\beta + \alpha\beta^2 = 6α2β+αβ2=6(2) α2+β2=−234\alpha^2 + \beta^2 = -\frac{23}{4}α2+β2=−423(3) βα+αβ=−2316\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = -\frac{23}{16}αβ+βα=−1623(4) α3+β3=−1178\alpha^3 + \beta^3 = -\frac{117}{8}α3+β3=−8117