The problem asks us to determine the limits for four different functions. a) (i) $\lim_{x \to 3} (x^4 + 4x^2 - 3)$ a) (ii) $\lim_{z \to 8} \frac{2z^2 - 17z + 8}{8-z}$ b) Given $\lim_{x \to 0} f(x) = 6$, $\lim_{x \to 0} g(x) = -4$, and $\lim_{x \to 0} h(x) = -1$, compute $\lim_{x \to 0} \sqrt{\frac{f(x)}{h(x) - g(x)}}$ c) For $f(x) = \frac{3x^7 - 4x^2 + 1}{5 - 10x^2}$, evaluate $\lim_{x \to \infty} f(x)$ d) Find $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x-2}$

AnalysisLimitsCalculusLimit PropertiesRational FunctionsPolynomialsIndeterminate FormsConjugate
2025/6/9

1. Problem Description

The problem asks us to determine the limits for four different functions.
a) (i) limx3(x4+4x23)\lim_{x \to 3} (x^4 + 4x^2 - 3)
a) (ii) limz82z217z+88z\lim_{z \to 8} \frac{2z^2 - 17z + 8}{8-z}
b) Given limx0f(x)=6\lim_{x \to 0} f(x) = 6, limx0g(x)=4\lim_{x \to 0} g(x) = -4, and limx0h(x)=1\lim_{x \to 0} h(x) = -1, compute limx0f(x)h(x)g(x)\lim_{x \to 0} \sqrt{\frac{f(x)}{h(x) - g(x)}}
c) For f(x)=3x74x2+1510x2f(x) = \frac{3x^7 - 4x^2 + 1}{5 - 10x^2}, evaluate limxf(x)\lim_{x \to \infty} f(x)
d) Find limx2x2x2\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x-2}

2. Solution Steps

a) (i) limx3(x4+4x23)\lim_{x \to 3} (x^4 + 4x^2 - 3)
Since this is a polynomial, we can directly substitute x=3x = 3 into the expression.
limx3(x4+4x23)=(34+4(32)3)=81+4(9)3=81+363=114\lim_{x \to 3} (x^4 + 4x^2 - 3) = (3^4 + 4(3^2) - 3) = 81 + 4(9) - 3 = 81 + 36 - 3 = 114
a) (ii) limz82z217z+88z\lim_{z \to 8} \frac{2z^2 - 17z + 8}{8-z}
We first try to substitute z=8z=8 directly into the expression:
2(82)17(8)+888=128136+80=00\frac{2(8^2) - 17(8) + 8}{8-8} = \frac{128 - 136 + 8}{0} = \frac{0}{0}.
Since we get an indeterminate form, we factorize the numerator.
2z217z+8=(2z1)(z8)=(2z1)(8z)2z^2 - 17z + 8 = (2z-1)(z-8) = -(2z-1)(8-z).
Then
limz82z217z+88z=limz8(2z1)(8z)8z=limz8(2z1)=(2(8)1)=(161)=15\lim_{z \to 8} \frac{2z^2 - 17z + 8}{8-z} = \lim_{z \to 8} \frac{-(2z-1)(8-z)}{8-z} = \lim_{z \to 8} -(2z-1) = -(2(8)-1) = -(16-1) = -15
b) limx0f(x)h(x)g(x)\lim_{x \to 0} \sqrt{\frac{f(x)}{h(x) - g(x)}}
Since we are given the limits of f(x)f(x), g(x)g(x), and h(x)h(x), we can use limit properties.
limx0f(x)h(x)g(x)=limx0f(x)limx0h(x)limx0g(x)=61(4)=61+4=63=2\lim_{x \to 0} \sqrt{\frac{f(x)}{h(x) - g(x)}} = \sqrt{\frac{\lim_{x \to 0} f(x)}{\lim_{x \to 0} h(x) - \lim_{x \to 0} g(x)}} = \sqrt{\frac{6}{-1 - (-4)}} = \sqrt{\frac{6}{-1 + 4}} = \sqrt{\frac{6}{3}} = \sqrt{2}
c) limx3x74x2+1510x2\lim_{x \to \infty} \frac{3x^7 - 4x^2 + 1}{5 - 10x^2}
We divide the numerator and denominator by the highest power of xx in the denominator, which is x2x^2.
limx3x74x2+1510x2=limx3x7x24x2x2+1x25x210x2x2=limx3x54+1x25x210\lim_{x \to \infty} \frac{3x^7 - 4x^2 + 1}{5 - 10x^2} = \lim_{x \to \infty} \frac{\frac{3x^7}{x^2} - \frac{4x^2}{x^2} + \frac{1}{x^2}}{\frac{5}{x^2} - \frac{10x^2}{x^2}} = \lim_{x \to \infty} \frac{3x^5 - 4 + \frac{1}{x^2}}{\frac{5}{x^2} - 10}
As xx \to \infty, 3x53x^5 \to \infty and 1x20\frac{1}{x^2} \to 0 and 5x20\frac{5}{x^2} \to 0.
So the limit is limx3x54+1x25x210=10=\lim_{x \to \infty} \frac{3x^5 - 4 + \frac{1}{x^2}}{\frac{5}{x^2} - 10} = \frac{\infty}{-10} = -\infty
d) limx2x2x2\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x-2}
If we substitute x=2x=2, we get 00\frac{0}{0}. We multiply the numerator and denominator by the conjugate of the numerator, which is x+2\sqrt{x} + \sqrt{2}.
limx2x2x2=limx2(x2)(x+2)(x2)(x+2)=limx2x2(x2)(x+2)=limx21x+2\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x-2} = \lim_{x \to 2} \frac{(\sqrt{x} - \sqrt{2})(\sqrt{x} + \sqrt{2})}{(x-2)(\sqrt{x} + \sqrt{2})} = \lim_{x \to 2} \frac{x - 2}{(x-2)(\sqrt{x} + \sqrt{2})} = \lim_{x \to 2} \frac{1}{\sqrt{x} + \sqrt{2}}
Now substitute x=2x=2.
limx21x+2=12+2=122=24\lim_{x \to 2} \frac{1}{\sqrt{x} + \sqrt{2}} = \frac{1}{\sqrt{2} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}

3. Final Answer

a) (i) 114
a) (ii) -15
b) 2\sqrt{2}
c) -\infty
d) 24\frac{\sqrt{2}}{4}

Related problems in "Analysis"

We need to solve five differentiation problems: a) Differentiate $y = 4x^2 - 2x$ from first principl...

DifferentiationDerivativesFirst PrinciplesProduct RuleQuotient RuleChain Rule
2025/6/9

We are asked to evaluate the following limits: a) $\lim_{x \to 5} 3x^2 + 2x - 9$ b) $\lim_{x \to 6} ...

LimitsContinuityPolynomialsRational FunctionsConjugateInfinite Limits
2025/6/9

The problem consists of three integration questions. a) Evaluate the indefinite integral $\int (2 + ...

CalculusIntegrationIndefinite IntegralsDefinite IntegralsPartial Fractions
2025/6/9

The problem asks us to find derivatives of different functions. Specifically, a) Differentiate $f(x)...

DifferentiationDerivativesCalculusFirst PrinciplesQuotient Rule
2025/6/9

The problem has two parts. The first part asks to determine the modulus and argument of the complex ...

Complex NumbersModulusArgumentDifferential EquationsSecond-Order Differential EquationsInitial Value ProblemCharacteristic EquationRepeated Roots
2025/6/9

a) Differentiate $y = 4x^2 - 2x$ from first principles. b) Differentiate $f(x) = (6 + \frac{1}{x^3})...

CalculusDifferentiationDerivativesProduct RuleQuotient RuleChain RuleLimits
2025/6/9

We need to evaluate the following limits and examine the continuity of a function. a) $\lim_{x \to 5...

LimitsContinuityFunctionsPolynomialsRational FunctionsConjugateInfinite Limits
2025/6/9

We are asked to differentiate the given expressions with respect to $x$. The expressions are: a) $(3...

DifferentiationPower RuleQuotient RuleCalculus
2025/6/9

We are asked to differentiate the function $y = 3x^2 + 2x + 5$ from the first principle.

DifferentiationFirst PrincipleCalculusLimitsPolynomials
2025/6/9

The problem has three parts. 2.1: A balloon is rising at 2 m/s and a boy is cycling at 5 m/s. When t...

Related RatesIntermediate Value TheoremMean Value TheoremCalculusDerivativesContinuityDifferentiation
2025/6/8