a) (i) limx→3(x4+4x2−3) Since this is a polynomial, we can directly substitute x=3 into the expression. limx→3(x4+4x2−3)=(34+4(32)−3)=81+4(9)−3=81+36−3=114 a) (ii) limz→88−z2z2−17z+8 We first try to substitute z=8 directly into the expression: 8−82(82)−17(8)+8=0128−136+8=00. Since we get an indeterminate form, we factorize the numerator.
2z2−17z+8=(2z−1)(z−8)=−(2z−1)(8−z). Then
limz→88−z2z2−17z+8=limz→88−z−(2z−1)(8−z)=limz→8−(2z−1)=−(2(8)−1)=−(16−1)=−15 b) limx→0h(x)−g(x)f(x) Since we are given the limits of f(x), g(x), and h(x), we can use limit properties. limx→0h(x)−g(x)f(x)=limx→0h(x)−limx→0g(x)limx→0f(x)=−1−(−4)6=−1+46=36=2 c) limx→∞5−10x23x7−4x2+1 We divide the numerator and denominator by the highest power of x in the denominator, which is x2. limx→∞5−10x23x7−4x2+1=limx→∞x25−x210x2x23x7−x24x2+x21=limx→∞x25−103x5−4+x21 As x→∞, 3x5→∞ and x21→0 and x25→0. So the limit is limx→∞x25−103x5−4+x21=−10∞=−∞ d) limx→2x−2x−2 If we substitute x=2, we get 00. We multiply the numerator and denominator by the conjugate of the numerator, which is x+2. limx→2x−2x−2=limx→2(x−2)(x+2)(x−2)(x+2)=limx→2(x−2)(x+2)x−2=limx→2x+21 Now substitute x=2. limx→2x+21=2+21=221=42