a) Differentiating from first principles:
The definition of the derivative from first principles is:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} f ′ ( x ) = lim h → 0 h f ( x + h ) − f ( x )
For f ( x ) = x 2 f(x) = x^2 f ( x ) = x 2 : f ( x + h ) = ( x + h ) 2 = x 2 + 2 x h + h 2 f(x+h) = (x+h)^2 = x^2 + 2xh + h^2 f ( x + h ) = ( x + h ) 2 = x 2 + 2 x h + h 2 f ′ ( x ) = lim h → 0 x 2 + 2 x h + h 2 − x 2 h = lim h → 0 2 x h + h 2 h = lim h → 0 ( 2 x + h ) = 2 x f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x f ′ ( x ) = lim h → 0 h x 2 + 2 x h + h 2 − x 2 = lim h → 0 h 2 x h + h 2 = lim h → 0 ( 2 x + h ) = 2 x So, f ′ ( x ) = 2 x f'(x) = 2x f ′ ( x ) = 2 x .
The gradient at x = 2 x=2 x = 2 is f ′ ( 2 ) = 2 ( 2 ) = 4 f'(2) = 2(2) = 4 f ′ ( 2 ) = 2 ( 2 ) = 4 .
b) (i) f ( x ) = 6 x 2 − 9 x + 4 f(x) = 6x^2 - 9x + 4 f ( x ) = 6 x 2 − 9 x + 4 f ′ ( x ) = 12 x − 9 f'(x) = 12x - 9 f ′ ( x ) = 12 x − 9
(ii) y = x + 8 x 3 − 2 x 4 = x 1 / 2 + 8 x 1 / 3 − 2 x 1 / 4 y = \sqrt{x} + 8\sqrt[3]{x} - 2\sqrt[4]{x} = x^{1/2} + 8x^{1/3} - 2x^{1/4} y = x + 8 3 x − 2 4 x = x 1/2 + 8 x 1/3 − 2 x 1/4 y ′ = 1 2 x − 1 / 2 + 8 3 x − 2 / 3 − 2 4 x − 3 / 4 = 1 2 x − 1 / 2 + 8 3 x − 2 / 3 − 1 2 x − 3 / 4 y' = \frac{1}{2}x^{-1/2} + \frac{8}{3}x^{-2/3} - \frac{2}{4}x^{-3/4} = \frac{1}{2}x^{-1/2} + \frac{8}{3}x^{-2/3} - \frac{1}{2}x^{-3/4} y ′ = 2 1 x − 1/2 + 3 8 x − 2/3 − 4 2 x − 3/4 = 2 1 x − 1/2 + 3 8 x − 2/3 − 2 1 x − 3/4 y ′ = 1 2 x + 8 3 x 2 3 − 1 2 x 3 4 y' = \frac{1}{2\sqrt{x}} + \frac{8}{3\sqrt[3]{x^2}} - \frac{1}{2\sqrt[4]{x^3}} y ′ = 2 x 1 + 3 3 x 2 8 − 2 4 x 3 1
c) g ( x ) = 6 x 2 2 − x g(x) = \frac{6x^2}{2-x} g ( x ) = 2 − x 6 x 2 Quotient rule: If g ( x ) = u ( x ) v ( x ) g(x) = \frac{u(x)}{v(x)} g ( x ) = v ( x ) u ( x ) , then g ′ ( x ) = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) [ v ( x ) ] 2 g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} g ′ ( x ) = [ v ( x ) ] 2 u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) . Here, u ( x ) = 6 x 2 u(x) = 6x^2 u ( x ) = 6 x 2 , u ′ ( x ) = 12 x u'(x) = 12x u ′ ( x ) = 12 x v ( x ) = 2 − x v(x) = 2-x v ( x ) = 2 − x , v ′ ( x ) = − 1 v'(x) = -1 v ′ ( x ) = − 1 g ′ ( x ) = ( 12 x ) ( 2 − x ) − ( 6 x 2 ) ( − 1 ) ( 2 − x ) 2 = 24 x − 12 x 2 + 6 x 2 ( 2 − x ) 2 = 24 x − 6 x 2 ( 2 − x ) 2 = 6 x ( 4 − x ) ( 2 − x ) 2 g'(x) = \frac{(12x)(2-x) - (6x^2)(-1)}{(2-x)^2} = \frac{24x - 12x^2 + 6x^2}{(2-x)^2} = \frac{24x - 6x^2}{(2-x)^2} = \frac{6x(4-x)}{(2-x)^2} g ′ ( x ) = ( 2 − x ) 2 ( 12 x ) ( 2 − x ) − ( 6 x 2 ) ( − 1 ) = ( 2 − x ) 2 24 x − 12 x 2 + 6 x 2 = ( 2 − x ) 2 24 x − 6 x 2 = ( 2 − x ) 2 6 x ( 4 − x )
d) f ( x ) = 2 e x − 8 x f(x) = 2e^x - 8^x f ( x ) = 2 e x − 8 x The derivative of e x e^x e x is e x e^x e x . The derivative of a x a^x a x is a x ln a a^x \ln a a x ln a . f ′ ( x ) = 2 e x − 8 x ln 8 f'(x) = 2e^x - 8^x \ln 8 f ′ ( x ) = 2 e x − 8 x ln 8