We are asked to evaluate the following limits: a) $\lim_{x \to 5} 3x^2 + 2x - 9$ b) $\lim_{x \to 6} \frac{x^2 - 36}{x - 6}$ c) $\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2}$ d) $\lim_{x \to \infty} \frac{-6x^4 + x^2 + 1}{2x^4 - x}$ e) Examine whether the function $f(x) = \begin{cases} x^3 - 2x + 1 & \text{if } x \le 2 \\ 3x - 2 & \text{if } x > 2 \end{cases}$ is continuous at $x = 2$.

AnalysisLimitsContinuityPolynomialsRational FunctionsConjugateInfinite Limits
2025/6/9

1. Problem Description

We are asked to evaluate the following limits:
a) limx53x2+2x9\lim_{x \to 5} 3x^2 + 2x - 9
b) limx6x236x6\lim_{x \to 6} \frac{x^2 - 36}{x - 6}
c) limx0x2+42x2\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2}
d) limx6x4+x2+12x4x\lim_{x \to \infty} \frac{-6x^4 + x^2 + 1}{2x^4 - x}
e) Examine whether the function f(x)={x32x+1if x23x2if x>2f(x) = \begin{cases} x^3 - 2x + 1 & \text{if } x \le 2 \\ 3x - 2 & \text{if } x > 2 \end{cases} is continuous at x=2x = 2.

2. Solution Steps

a) Since the function 3x2+2x93x^2 + 2x - 9 is a polynomial, we can evaluate the limit by direct substitution:
limx53x2+2x9=3(52)+2(5)9=3(25)+109=75+109=76\lim_{x \to 5} 3x^2 + 2x - 9 = 3(5^2) + 2(5) - 9 = 3(25) + 10 - 9 = 75 + 10 - 9 = 76.
b) We can factor the numerator as a difference of squares:
x236=(x6)(x+6)x^2 - 36 = (x - 6)(x + 6).
Then,
limx6x236x6=limx6(x6)(x+6)x6=limx6(x+6)=6+6=12\lim_{x \to 6} \frac{x^2 - 36}{x - 6} = \lim_{x \to 6} \frac{(x - 6)(x + 6)}{x - 6} = \lim_{x \to 6} (x + 6) = 6 + 6 = 12.
c) We can multiply by the conjugate of the numerator:
limx0x2+42x2=limx0x2+42x2x2+4+2x2+4+2=limx0(x2+4)4x2(x2+4+2)=limx0x2x2(x2+4+2)=limx01x2+4+2=10+4+2=12+2=14\lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2} = \lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2} \cdot \frac{\sqrt{x^2 + 4} + 2}{\sqrt{x^2 + 4} + 2} = \lim_{x \to 0} \frac{(x^2 + 4) - 4}{x^2(\sqrt{x^2 + 4} + 2)} = \lim_{x \to 0} \frac{x^2}{x^2(\sqrt{x^2 + 4} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 4} + 2} = \frac{1}{\sqrt{0 + 4} + 2} = \frac{1}{2 + 2} = \frac{1}{4}.
d) We divide both the numerator and the denominator by the highest power of xx, which is x4x^4:
limx6x4+x2+12x4x=limx6+1x2+1x421x3=6+0+020=62=3\lim_{x \to \infty} \frac{-6x^4 + x^2 + 1}{2x^4 - x} = \lim_{x \to \infty} \frac{-6 + \frac{1}{x^2} + \frac{1}{x^4}}{2 - \frac{1}{x^3}} = \frac{-6 + 0 + 0}{2 - 0} = \frac{-6}{2} = -3.
e) For the function to be continuous at x=2x = 2, we need limx2f(x)=limx2+f(x)=f(2)\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2).
f(2)=(2)32(2)+1=84+1=5f(2) = (2)^3 - 2(2) + 1 = 8 - 4 + 1 = 5.
limx2f(x)=limx2(x32x+1)=(2)32(2)+1=84+1=5\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (x^3 - 2x + 1) = (2)^3 - 2(2) + 1 = 8 - 4 + 1 = 5.
limx2+f(x)=limx2+(3x2)=3(2)2=62=4\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x - 2) = 3(2) - 2 = 6 - 2 = 4.
Since limx2f(x)limx2+f(x)\lim_{x \to 2^-} f(x) \ne \lim_{x \to 2^+} f(x), the function is not continuous at x=2x = 2.

3. Final Answer

a) 76
b) 12
c) 1/4
d) -3
e) The function is not continuous at x=2x = 2.

Related problems in "Analysis"

We need to solve five differentiation problems: a) Differentiate $y = 4x^2 - 2x$ from first principl...

DifferentiationDerivativesFirst PrinciplesProduct RuleQuotient RuleChain Rule
2025/6/9

The problem consists of three integration questions. a) Evaluate the indefinite integral $\int (2 + ...

CalculusIntegrationIndefinite IntegralsDefinite IntegralsPartial Fractions
2025/6/9

The problem asks us to find derivatives of different functions. Specifically, a) Differentiate $f(x)...

DifferentiationDerivativesCalculusFirst PrinciplesQuotient Rule
2025/6/9

The problem asks us to determine the limits for four different functions. a) (i) $\lim_{x \to 3} (x^...

LimitsCalculusLimit PropertiesRational FunctionsPolynomialsIndeterminate FormsConjugate
2025/6/9

The problem has two parts. The first part asks to determine the modulus and argument of the complex ...

Complex NumbersModulusArgumentDifferential EquationsSecond-Order Differential EquationsInitial Value ProblemCharacteristic EquationRepeated Roots
2025/6/9

a) Differentiate $y = 4x^2 - 2x$ from first principles. b) Differentiate $f(x) = (6 + \frac{1}{x^3})...

CalculusDifferentiationDerivativesProduct RuleQuotient RuleChain RuleLimits
2025/6/9

We need to evaluate the following limits and examine the continuity of a function. a) $\lim_{x \to 5...

LimitsContinuityFunctionsPolynomialsRational FunctionsConjugateInfinite Limits
2025/6/9

We are asked to differentiate the given expressions with respect to $x$. The expressions are: a) $(3...

DifferentiationPower RuleQuotient RuleCalculus
2025/6/9

We are asked to differentiate the function $y = 3x^2 + 2x + 5$ from the first principle.

DifferentiationFirst PrincipleCalculusLimitsPolynomials
2025/6/9

The problem has three parts. 2.1: A balloon is rising at 2 m/s and a boy is cycling at 5 m/s. When t...

Related RatesIntermediate Value TheoremMean Value TheoremCalculusDerivativesContinuityDifferentiation
2025/6/8