a) Since the function 3x2+2x−9 is a polynomial, we can evaluate the limit by direct substitution: limx→53x2+2x−9=3(52)+2(5)−9=3(25)+10−9=75+10−9=76. b) We can factor the numerator as a difference of squares:
x2−36=(x−6)(x+6). Then,
limx→6x−6x2−36=limx→6x−6(x−6)(x+6)=limx→6(x+6)=6+6=12. c) We can multiply by the conjugate of the numerator:
limx→0x2x2+4−2=limx→0x2x2+4−2⋅x2+4+2x2+4+2=limx→0x2(x2+4+2)(x2+4)−4=limx→0x2(x2+4+2)x2=limx→0x2+4+21=0+4+21=2+21=41. d) We divide both the numerator and the denominator by the highest power of x, which is x4: limx→∞2x4−x−6x4+x2+1=limx→∞2−x31−6+x21+x41=2−0−6+0+0=2−6=−3. e) For the function to be continuous at x=2, we need limx→2−f(x)=limx→2+f(x)=f(2). f(2)=(2)3−2(2)+1=8−4+1=5. limx→2−f(x)=limx→2−(x3−2x+1)=(2)3−2(2)+1=8−4+1=5. limx→2+f(x)=limx→2+(3x−2)=3(2)−2=6−2=4. Since limx→2−f(x)=limx→2+f(x), the function is not continuous at x=2.