四面体ABCDにおいて、辺の長さや内分点、角度などの条件が与えられたとき、ベクトル AE, AP, AQ, AR をベクトル b, c, d を用いて表し、ARの長さを求める問題です。
2025/6/12
1. 問題の内容
四面体ABCDにおいて、辺の長さや内分点、角度などの条件が与えられたとき、ベクトル AE, AP, AQ, AR をベクトル b, c, d を用いて表し、ARの長さを求める問題です。
2. 解き方の手順
(1) AEを求める:
点Eは辺BCを2:1に内分するので、
次にAPを求める:
点Fは辺ADを1:2に内分するので、.
点Pは線分EFの中点なので、
(2) AQを求める:
点Qは直線BPと平面ACDの交点なので、
と表せる。
また、点Qは直線BP上にあるので、実数 k を用いて
は一次独立なので、 の の係数は0である。
したがって、 より .
(3) ARを求める:
点Gは辺ABを1:3に内分するので、.
点Rは直線APと平面GCDの交点なので、
と表せる。
また、点Rは直線AP上にあるので、実数 l を用いて
であるから、
と を比較して、
なので、
を代入すると、
より、. よって、
.
3. 最終的な答え
(1) 、
(2)
(3) 、