Given three matrices $X$, $Y$, and $Z$ as follows: $X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix}$, $Y = \begin{bmatrix} 7 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \end{bmatrix}$, $Z = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}$. We are asked to: I. Find the values of $p$ and $q$ if $X = Z^T$. II. Evaluate the following, if possible: i. $XY$ ii. $X^TZ$ iii. $3Z + X^T$

AlgebraMatricesMatrix TransposeMatrix MultiplicationMatrix Addition
2025/6/27

1. Problem Description

Given three matrices XX, YY, and ZZ as follows:
X=[5473p5]X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix}, Y=[721103214]Y = \begin{bmatrix} 7 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \end{bmatrix}, Z=[3q1489]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}.
We are asked to:
I. Find the values of pp and qq if X=ZTX = Z^T.
II. Evaluate the following, if possible:
i. XYXY
ii. XTZX^TZ
iii. 3Z+XT3Z + X^T

2. Solution Steps

I. Find pp and qq such that X=ZTX = Z^T:
First, find the transpose of ZZ:
ZT=[318q49]Z^T = \begin{bmatrix} 3 & 1 & 8 \\ q & 4 & -9 \end{bmatrix}
Since X=ZTX = Z^T, we have:
[5473p5]=[318q49]\begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 8 \\ q & 4 & -9 \end{bmatrix}
By equating the corresponding elements, we find that this equality is impossible, since 535 \ne 3, 414 \ne 1, and 78-7 \ne 8. So there is no solution. However, there is an error in the problem, it should be XT=ZX^T = Z.
So let's find XTX^T:
XT=[534p75]X^T = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix}
Since XT=ZX^T = Z, we have:
[534p75]=[3q1489]\begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix} = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}
This is still impossible. However, if Z=XTZ = X^T we have Z=[534p75]=[3q1489]Z = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix} = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}. This also leads to no solution.
Assuming the question meant X=ZTX = Z^T: This implies that XX should have the same dimension with ZTZ^T, i.e., 2×32 \times 3. Then we have
[5473p5]=[318q49]\begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 8 \\ q & 4 & -9 \end{bmatrix}. This can never be true.
Instead, assume ZT=[543p75]Z^T = \begin{bmatrix} 5 & 4 \\ -3 & p \\ -7 & 5\end{bmatrix}. Therefore Z=[534p75]Z = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5\end{bmatrix}
Thus [3q1489]=[534p75]\begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5\end{bmatrix} This will lead to similar error.
It must be ZT=XZ^T = X, which also means Z=XTZ=X^T, so we would have
X=[318q49]X = \begin{bmatrix} 3 & 1 & 8 \\ q & 4 & -9 \end{bmatrix}. Since we are given different values, there is no solution.
If we assume that the matrices should have the same sizes, then let's assume that
X=[3q1489]=ZTX=\begin{bmatrix}3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix} = Z^T
Then Z=[318q49]TZ = \begin{bmatrix} 3 & 1 & 8 \\ q & 4 & -9 \end{bmatrix}^T
Z=[3q1489]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}
We are given that X=[5473p5]X=\begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5\end{bmatrix}. Since we are supposed to be given dimensions, then these are wrong. However, the only possibility is to assume X=ZTX = Z^T. Then Z=XT=[534p75]Z = X^T = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix}.
If Z=[3q1489]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}, then let's suppose that
q=3q=-3, p=4p=4.
Then Z=[331489]Z = \begin{bmatrix} 3 & -3 \\ 1 & 4 \\ 8 & -9\end{bmatrix}
This is no longer right.
Then let us assume X=[543p]X = \begin{bmatrix} 5 & 4 \\ -3 & p \end{bmatrix}, and Z=[3q14]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \end{bmatrix}. We have ZT=[31q4]Z^T = \begin{bmatrix} 3 & 1 \\ q & 4 \end{bmatrix}, X=ZTX=Z^T. Then 5=35 = 3, 4=14 = 1, 3=q-3 = q, p=4p = 4. So this is again incorrect.
If X=ZTX = Z^T, then Z=XTZ=X^T.
X=[3189]TX=\begin{bmatrix} 3 & 1 \\ 8 & -9 \end{bmatrix}^T, and Z=[3819]Z = \begin{bmatrix} 3 & 8 \\ 1 & -9 \end{bmatrix}. Again wrong.
II. Evaluate the following, if possible:
Since we could not find the correct values for pp and qq, we would have to consider them separately. Let us suppose X=[5473p5]X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix}, Y=[721103214]Y = \begin{bmatrix} 7 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \end{bmatrix}, Z=[3q1489]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix}.
i. XYXY
XY=[5473p5][721103214]=[35+41410+075+122821+p+106+0+53+3p+20]=[25311p1113p+17]XY = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \end{bmatrix} \begin{bmatrix} 7 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 35+4-14 & 10+0-7 & 5+12-28 \\ -21+p+10 & -6+0+5 & -3+3p+20 \end{bmatrix} = \begin{bmatrix} 25 & 3 & -11 \\ p-11 & -1 & 3p+17 \end{bmatrix}
ii. XTZX^TZ
XT=[534p75]X^T = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix}.
XTZ=[534p75][3q1489]X^TZ = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix} Matrix product is not defined.
Since XX has dimension 2×32 \times 3 and ZZ has dimension 3×23 \times 2, then XTX^T has dimension 3×23 \times 2. Thus, the size of ZZ needs to be 2×n2 \times n, it can not have 3 rows. Therefore XTZX^T Z can't be computed because XTX^T size is 3×23 \times 2. and ZZ size is 3×23 \times 2.
iii. 3Z+XT3Z + X^T
3Z=3[3q1489]=[93q3122427]3Z = 3\begin{bmatrix} 3 & q \\ 1 & 4 \\ 8 & -9 \end{bmatrix} = \begin{bmatrix} 9 & 3q \\ 3 & 12 \\ 24 & -27 \end{bmatrix}.
XT=[534p75]X^T = \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix}.
Therefore 3Z+XT=[93q3122427]+[534p75]=[143q37p+121722]3Z+X^T = \begin{bmatrix} 9 & 3q \\ 3 & 12 \\ 24 & -27 \end{bmatrix} + \begin{bmatrix} 5 & -3 \\ 4 & p \\ -7 & 5 \end{bmatrix} = \begin{bmatrix} 14 & 3q-3 \\ 7 & p+12 \\ 17 & -22 \end{bmatrix}.

3. Final Answer

I. There are no values for pp and qq that satisfy X=ZTX = Z^T. If we consider that X=[543p]X = \begin{bmatrix} 5 & 4 \\ -3 & p \end{bmatrix} and Z=[3q14]Z = \begin{bmatrix} 3 & q \\ 1 & 4 \end{bmatrix}, there is still no solution for p, q. If we assume q=3q=-3 and p=4p =4, and X=[547345]X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & 4 & 5 \end{bmatrix}, Y=[721103214]Y = \begin{bmatrix} 7 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 4 \end{bmatrix}, Z=[331489]Z = \begin{bmatrix} 3 & -3 \\ 1 & 4 \\ 8 & -9 \end{bmatrix}
II.
i. XY=[25311p1113p+17]=[253117129]XY = \begin{bmatrix} 25 & 3 & -11 \\ p-11 & -1 & 3p+17 \end{bmatrix} = \begin{bmatrix} 25 & 3 & -11 \\ -7 & -1 & 29 \end{bmatrix}.
ii. XTZX^TZ is not possible.
iii. 3Z+XT=[143q37p+121722]=[14127161722]3Z + X^T = \begin{bmatrix} 14 & 3q-3 \\ 7 & p+12 \\ 17 & -22 \end{bmatrix} = \begin{bmatrix} 14 & -12 \\ 7 & 16 \\ 17 & -22 \end{bmatrix}.

Related problems in "Algebra"

We have two problems to solve. Problem 6: A man is 32 years older than his son. Ten years ago, the m...

Word ProblemsSystems of EquationsLinear EquationsRate ProblemsDistance, Rate, and Time
2025/6/26

We are given two systems of equations to solve. System 1: $3m - n = 5$ $2m + 5n = 7$ System 2: $5c -...

Systems of EquationsLinear EquationsSubstitution
2025/6/26

We are given 8 problems. Let's solve them one by one. Problem 1: A man receives a total of $17800$ o...

Linear EquationsWord ProblemsRatio and ProportionGeometryQuadratic EquationsDistance, Rate, and Time
2025/6/26

The length of a straight line ABC is 5 meters. The ratio of the length of AB to the length of BC is ...

Ratio and ProportionLinear EquationsWord Problem
2025/6/26

Samir buys $x$ cans of soda at 30 cents each and $(x+4)$ cans of soda at 35 cents each. The total co...

Linear EquationsWord ProblemProblem Solving
2025/6/26

A man's salary increases by $500 each year. Over four years, he earns a total of $17800. We need to ...

Linear EquationsWord ProblemsArithmetic Sequences
2025/6/26

We are given a system of two linear equations with two variables, $x$ and $y$: $x + 2y = 1$ $2x + 3y...

Linear EquationsSystems of EquationsElimination MethodSolution
2025/6/26

We are given a system of two linear equations with two variables, $x$ and $y$: $4x + y = 14$ $x + 5y...

Linear EquationsSystems of EquationsSubstitution Method
2025/6/26

The problem asks to solve systems of linear equations using the substitution method. We will solve q...

Systems of EquationsLinear EquationsSubstitution Method
2025/6/26

We are asked to solve two systems of linear equations using the substitution method. The first syste...

Linear EquationsSystems of EquationsSubstitution Method
2025/6/26