Given a regular hexagon $ABCDEF$, with $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagonVector Addition
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, with AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD,DE,EF,FA,AD,EA,AC\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, we have:
AB=p\vec{AB} = \vec{p}
BC=q\vec{BC} = \vec{q}
CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=AB=p\vec{EF} = -\vec{AB} = -\vec{p}
FA=BC=q\vec{FA} = -\vec{BC} = -\vec{q}
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}
AD=AB+BC+CD=p+qp=2q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} - \vec{p} = 2\vec{q} (Since AD\vec{AD} is parallel to BC\vec{BC}, and twice the length of BC\vec{BC}.) Alternatively, AD=2BC\vec{AD} = 2\vec{BC}.
EA=BCAB=qp\vec{EA} = \vec{BC} - \vec{AB} = \vec{q} - \vec{p}
In a regular hexagon, we have:
CD=AB=p\vec{CD} = -\vec{AB} = -\vec{p}
DE=BC=q\vec{DE} = -\vec{BC} = -\vec{q}
EF=AB=p\vec{EF} = -\vec{AB} = -\vec{p}
FA=BC=q\vec{FA} = -\vec{BC} = -\vec{q}
AD=2BC=2q\vec{AD} = 2 \vec{BC} = 2\vec{q}
EA=qp\vec{EA} = \vec{q} - \vec{p}
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}

3. Final Answer

CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=qp\vec{EA} = \vec{q}-\vec{p}
AC=p+q\vec{AC} = \vec{p} + \vec{q}

Related problems in "Geometry"

The problem asks us to find the area of the composite shape, which is a rectangle and a triangle. W...

AreaComposite ShapesRectanglesTrianglesGeometric Formulas
2025/4/7

The problem is to find the area of the given polygon. The polygon consists of a rectangle and two tr...

AreaPolygonsRectanglesTrianglesGeometric Formulas
2025/4/7

The problem asks to find the total area of a composite shape consisting of a right triangle and a re...

AreaComposite ShapesRectangleTriangle
2025/4/7

The problem asks us to find the area of the composite shape. The shape consists of a rectangle and a...

AreaComposite ShapesRectangleTriangle
2025/4/7

The problem asks to find the area of the composite shape shown in Task Card 10. The shape is compose...

AreaRectanglesComposite Shapes
2025/4/7

The problem asks to find the area of the polygon. The polygon can be decomposed into three rectangle...

AreaPolygonsRectanglesDecomposition
2025/4/7

We are asked to find the area of a regular hexagon. We are given the apothem, which is the perpendic...

HexagonAreaApothemRegular PolygonTrigonometryApproximation
2025/4/7

The problem asks to find the area of a regular pentagon, given that the apothem (the distance from t...

PolygonsRegular PolygonsAreaTrigonometryApothemPentagon
2025/4/7

The problem asks to find the area of a right triangle on a flag. The flag has dimensions labeled, wi...

AreaTrianglesRight TrianglesGeometric ShapesMeasurements
2025/4/7

A right triangle is removed from a rectangle. We need to find the area of the shaded region. The rec...

AreaRectangleTriangleRight TriangleGeometric Shapes
2025/4/7