Since A B C D E F ABCDEF A BC D EF is a regular hexagon, all sides have equal length, and each interior angle is 120 ∘ 120^\circ 12 0 ∘ . Therefore ∣ A B ∣ = ∣ B C ∣ = ∣ C D ∣ = ∣ D E ∣ = ∣ E F ∣ = ∣ F A ∣ |AB| = |BC| = |CD| = |DE| = |EF| = |FA| ∣ A B ∣ = ∣ BC ∣ = ∣ C D ∣ = ∣ D E ∣ = ∣ EF ∣ = ∣ F A ∣ . Also, A B ∥ D E AB \parallel DE A B ∥ D E , B C ∥ E F BC \parallel EF BC ∥ EF , C D ∥ F A CD \parallel FA C D ∥ F A , A D ∥ B E ∥ C F AD \parallel BE \parallel CF A D ∥ BE ∥ CF .
C D ⃗ = B A ⃗ + B C ⃗ + C D ⃗ = B A ⃗ + B C ⃗ + A F ⃗ = B A ⃗ + A F ⃗ \vec{CD} = \vec{BA} + \vec{BC} + \vec{CD} = \vec{BA} + \vec{BC} + \vec{AF} = \vec{BA} + \vec{AF} C D = B A + BC + C D = B A + BC + A F = B A + A F Since A B C D E F ABCDEF A BC D EF is regular hexagon: C D ⃗ = − p ⃗ \vec{CD} = -\vec{p} C D = − p . D E ⃗ = − q ⃗ \vec{DE} = -\vec{q} D E = − q . E F ⃗ = − p ⃗ \vec{EF} = -\vec{p} EF = − p . F A ⃗ = − B A ⃗ + − B C ⃗ + − C D ⃗ = − ( − C D ⃗ ) \vec{FA} = \vec{ -BA} + \vec{-BC} + \vec{-CD} = -(-\vec{CD}) F A = − B A + − BC + − C D = − ( − C D ) F A ⃗ = D E ⃗ = − D E ⃗ = − q ⃗ \vec{FA} = \vec{DE} = -\vec{DE} = -\vec{q} F A = D E = − D E = − q Consider A D ⃗ = A B ⃗ + B C ⃗ + C D ⃗ = p ⃗ + q ⃗ + ( − p ⃗ ) = p ⃗ + q ⃗ − p ⃗ = q ⃗ − p ⃗ + ( A F ⃗ ) = p ⃗ + q ⃗ − p ⃗ \vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} +(-\vec{p}) = \vec{p}+\vec{q}-\vec{p} = \vec{q}-\vec{p} + (\vec{AF}) = \vec{p}+\vec{q}-\vec{p} A D = A B + BC + C D = p + q + ( − p ) = p + q − p = q − p + ( A F ) = p + q − p Since A D = 2 ⋅ B C = 2 ⋅ B E = q AD = 2 \cdot BC = 2 \cdot BE = q A D = 2 ⋅ BC = 2 ⋅ BE = q Therefore: A D ⃗ = B C ⃗ + C F ⃗ − ( q ⃗ ) = 2 B E ⃗ \vec{AD} = \vec{BC} + \vec{CF} -(\vec{q} ) = 2 \vec{BE} A D = BC + CF − ( q ) = 2 BE Since opposite sides are equal. A D ⃗ = B C ⃗ + A F ⃗ = B C ⃗ − B C ⃗ \vec{AD} = \vec{BC} + \vec{AF} = \vec{BC} - \vec{BC} A D = BC + A F = BC − BC Also. A D ⃗ = A B ⃗ + B C ⃗ + C D ⃗ = p ⃗ + q ⃗ + ( − p ) = q ⃗ + E F ⃗ + F A ⃗ \vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-p) = \vec{q} + \vec{EF} + \vec{FA} A D = A B + BC + C D = p + q + ( − p ) = q + EF + F A In regular hexagon AD = 2BE
A D = A B + B C + C D = p ⃗ + q ⃗ + C D AD = AB+BC+CD = \vec{p}+\vec{q}+CD A D = A B + BC + C D = p + q + C D A D ⃗ = A B ⃗ + B C ⃗ + C D ⃗ = p ⃗ + q ⃗ − p ⃗ = q ⃗ \vec{AD} = \vec{AB}+\vec{BC}+\vec{CD} = \vec{p}+\vec{q}-\vec{p} = \vec{q} A D = A B + BC + C D = p + q − p = q A D ⃗ = B C ⃗ + 2 B M ⃗ \vec{AD} = \vec{BC} + 2\vec{BM} A D = BC + 2 BM A D ⃗ = A B ⃗ + B C ⃗ + C D ⃗ = ( p ⃗ + q ⃗ ) + ( − p ⃗ ) = q ⃗ + B E = B C ⃗ + C E ⃗ = B C ⃗ + A F ⃗ = C D ⃗ = 2 q \vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = (\vec{p} + \vec{q}) + (-\vec{p}) = \vec{q} + BE = \vec{BC}+\vec{CE}= \vec{BC}+\vec{AF}=\vec{CD}= 2q A D = A B + BC + C D = ( p + q ) + ( − p ) = q + BE = BC + CE = BC + A F = C D = 2 q A D ⃗ = p ⃗ + q ⃗ + ( − p ⃗ ) = q ⃗ + ( q ⃗ + p ⃗ − p ⃗ ) 2 q ⃗ ⟹ A D ⃗ = C D ⃗ − 2 p ⃗ \vec{AD}= \vec{p}+\vec{q}+ (-\vec{p}) = \vec{q} +(\vec{q}+\vec{p}-\vec{p}) \vec{2q} \implies \vec{AD} = \vec{CD} -2\vec{p} A D = p + q + ( − p ) = q + ( q + p − p ) 2 q ⟹ A D = C D − 2 p Since a regular hexagon can be divided into six equilateral triangles.
A D ⃗ = 2 B C ⃗ = 2 q ⃗ \vec{AD} = 2\vec{BC} = 2\vec{q} A D = 2 BC = 2 q Now we find E A ⃗ \vec{EA} E A : E A ⃗ = − A E ⃗ = − ( A D ⃗ + D E ⃗ ) = − ( 2 q ⃗ − q ⃗ ) = − q ⃗ \vec{EA} = - \vec{AE} = - (\vec{AD} + \vec{DE}) = -(2\vec{q} -\vec{q}) = - \vec{q} E A = − A E = − ( A D + D E ) = − ( 2 q − q ) = − q
A E ⃗ = A D ⃗ + D E ⃗ = 2 q ⃗ − q ⃗ = q ⃗ + F A ⃗ = p ⃗ + q ⃗ = E D ⃗ \vec{AE} = \vec{AD} + \vec{DE} = 2\vec{q} - \vec{q} = \vec{q}+\vec{FA} = \vec{p}+\vec{q}=\vec{ED} A E = A D + D E = 2 q − q = q + F A = p + q = E D E A ⃗ = − A E ⃗ = − A E ⃗ = E F ⃗ + F A ⃗ \vec{EA} = -\vec{AE}=-\vec{AE} = \vec{EF}+\vec{FA} E A = − A E = − A E = EF + F A E A ⃗ = − ( D E ⃗ + E F ⃗ + F A ⃗ ) = ( − 2 A C ⃗ ) \vec{EA} = - (\vec{DE}+\vec{EF}+\vec{FA})= (\vec{-2AC}) E A = − ( D E + EF + F A ) = ( − 2 A C ) . E A ⃗ = − p ⃗ + q ⃗ \vec{EA}=-\vec{p}+\vec{q} E A = − p + q A C ⃗ = A B ⃗ + B C ⃗ = p ⃗ + q ⃗ \vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q} A C = A B + BC = p + q .
A D ⃗ = 2 q ⃗ \vec{AD} = \vec{2q} A D = 2 q E A ⃗ = − ( q ⃗ ) \vec{EA} = -(\vec{q}) E A = − ( q ) A C ⃗ = p + q ⃗ \vec{AC} = \vec{p+q} A C = p + q