We are given a regular hexagon $ABCDEF$. We are also given that $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$. We want to express the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagonVector Addition
2025/3/30

1. Problem Description

We are given a regular hexagon ABCDEFABCDEF. We are also given that AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}. We want to express the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, all sides have equal length, and each interior angle is 120120^\circ. Therefore AB=BC=CD=DE=EF=FA|AB| = |BC| = |CD| = |DE| = |EF| = |FA|. Also, ABDEAB \parallel DE, BCEFBC \parallel EF, CDFACD \parallel FA, ADBECFAD \parallel BE \parallel CF.
CD=BA+BC+CD=BA+BC+AF=BA+AF\vec{CD} = \vec{BA} + \vec{BC} + \vec{CD} = \vec{BA} + \vec{BC} + \vec{AF} = \vec{BA} + \vec{AF}
Since ABCDEFABCDEF is regular hexagon: CD=p\vec{CD} = -\vec{p}.
DE=q\vec{DE} = -\vec{q}.
EF=p\vec{EF} = -\vec{p}.
FA=BA+BC+CD=(CD)\vec{FA} = \vec{ -BA} + \vec{-BC} + \vec{-CD} = -(-\vec{CD})
FA=CDFA= -CD.
FA=DE=DE=q\vec{FA} = \vec{DE} = -\vec{DE} = -\vec{q}
Consider AD=AB+BC+CD=p+q+(p)=p+qp=qp+(AF)=p+qp\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} +(-\vec{p}) = \vec{p}+\vec{q}-\vec{p} = \vec{q}-\vec{p} + (\vec{AF}) = \vec{p}+\vec{q}-\vec{p}
Since AD=2BC=2BE=qAD = 2 \cdot BC = 2 \cdot BE = q
Therefore: AD=BC+CF(q)=2BE\vec{AD} = \vec{BC} + \vec{CF} -(\vec{q} ) = 2 \vec{BE}
Since opposite sides are equal. AD=BC+AF=BCBC\vec{AD} = \vec{BC} + \vec{AF} = \vec{BC} - \vec{BC}
Also. AD=AB+BC+CD=p+q+(p)=q+EF+FA\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-p) = \vec{q} + \vec{EF} + \vec{FA}
In regular hexagon AD = 2BE
AD=AB+BC+CD=p+q+CDAD = AB+BC+CD = \vec{p}+\vec{q}+CD
AD=AB+BC+CD=p+qp=q\vec{AD} = \vec{AB}+\vec{BC}+\vec{CD} = \vec{p}+\vec{q}-\vec{p} = \vec{q}
AD=BC+2BM\vec{AD} = \vec{BC} + 2\vec{BM}
AD=AB+BC+CD=(p+q)+(p)=q+BE=BC+CE=BC+AF=CD=2q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = (\vec{p} + \vec{q}) + (-\vec{p}) = \vec{q} + BE = \vec{BC}+\vec{CE}= \vec{BC}+\vec{AF}=\vec{CD}= 2q
AD=p+q+(p)=q+(q+pp)2q    AD=CD2p\vec{AD}= \vec{p}+\vec{q}+ (-\vec{p}) = \vec{q} +(\vec{q}+\vec{p}-\vec{p}) \vec{2q} \implies \vec{AD} = \vec{CD} -2\vec{p}
Since a regular hexagon can be divided into six equilateral triangles.
AD=2BC=2q\vec{AD} = 2\vec{BC} = 2\vec{q}
Now we find EA\vec{EA}:
EA=AE=(AD+DE)=(2qq)=q\vec{EA} = - \vec{AE} = - (\vec{AD} + \vec{DE}) = -(2\vec{q} -\vec{q}) = - \vec{q}
AE=AD+DE=2qq=q+FA=p+q=ED\vec{AE} = \vec{AD} + \vec{DE} = 2\vec{q} - \vec{q} = \vec{q}+\vec{FA} = \vec{p}+\vec{q}=\vec{ED}
EA=AE=AE=EF+FA\vec{EA} = -\vec{AE}=-\vec{AE} = \vec{EF}+\vec{FA}
EA=(DE+EF+FA)=(2AC)\vec{EA} = - (\vec{DE}+\vec{EF}+\vec{FA})= (\vec{-2AC}).
EA=p+q\vec{EA}=-\vec{p}+\vec{q}
Consider AC\vec{AC}:
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.
CD=p\vec{CD} = -p
DE=q\vec{DE} = -q
EF=p\vec{EF} = -p
FA=q\vec{FA} = -q
AD=2q\vec{AD} = \vec{2q}
EA=(q)\vec{EA} = -(\vec{q})
AC=p+q\vec{AC} = \vec{p+q}

3. Final Answer

CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=pq\vec{EA} = \vec{p}-\vec{q}
AC=p+q\vec{AC} = \vec{p}+\vec{q}

Related problems in "Geometry"

The problem asks us to find the area of a circle, given its diameter. The diameter is given as 18 in...

AreaCircleDiameterRadiusPiApproximation
2025/4/8

The problem states that $ABCD$ is a cyclic quadrilateral with $AB = AD$ and $BC = DC$. $AC$ is the d...

Cyclic QuadrilateralKiteAngles in a CircleIsosceles Triangle
2025/4/8

The problem asks us to find the area of the composite shape, which is a rectangle and a triangle. W...

AreaComposite ShapesRectanglesTrianglesGeometric Formulas
2025/4/7

The problem is to find the area of the given polygon. The polygon consists of a rectangle and two tr...

AreaPolygonsRectanglesTrianglesGeometric Formulas
2025/4/7

The problem asks to find the total area of a composite shape consisting of a right triangle and a re...

AreaComposite ShapesRectangleTriangle
2025/4/7

The problem asks us to find the area of the composite shape. The shape consists of a rectangle and a...

AreaComposite ShapesRectangleTriangle
2025/4/7

The problem asks to find the area of the composite shape shown in Task Card 10. The shape is compose...

AreaRectanglesComposite Shapes
2025/4/7

The problem asks to find the area of the polygon. The polygon can be decomposed into three rectangle...

AreaPolygonsRectanglesDecomposition
2025/4/7

We are asked to find the area of a regular hexagon. We are given the apothem, which is the perpendic...

HexagonAreaApothemRegular PolygonTrigonometryApproximation
2025/4/7

The problem asks to find the area of a regular pentagon, given that the apothem (the distance from t...

PolygonsRegular PolygonsAreaTrigonometryApothemPentagon
2025/4/7