The problem asks us to find the compositions $f(g(x))$ and $g(f(x))$ given $f(x) = \sqrt{-15-x}$ and $g(x) = x^2 - 8x$.

AlgebraFunction CompositionFunctionsSquare Roots
2025/7/3

1. Problem Description

The problem asks us to find the compositions f(g(x))f(g(x)) and g(f(x))g(f(x)) given f(x)=15xf(x) = \sqrt{-15-x} and g(x)=x28xg(x) = x^2 - 8x.

2. Solution Steps

First, we find f(g(x))f(g(x)). This means we need to substitute g(x)g(x) into f(x)f(x) wherever we see xx.
f(g(x))=f(x28x)=15(x28x)=15x2+8xf(g(x)) = f(x^2 - 8x) = \sqrt{-15 - (x^2 - 8x)} = \sqrt{-15 - x^2 + 8x}.
Next, we find g(f(x))g(f(x)). This means we need to substitute f(x)f(x) into g(x)g(x) wherever we see xx.
g(f(x))=g(15x)=(15x)28(15x)=(15x)815xg(f(x)) = g(\sqrt{-15-x}) = (\sqrt{-15-x})^2 - 8(\sqrt{-15-x}) = (-15-x) - 8\sqrt{-15-x}.
g(f(x))=15x815xg(f(x)) = -15 - x - 8\sqrt{-15-x}.

3. Final Answer

f(g(x))=15x2+8xf(g(x)) = \sqrt{-15 - x^2 + 8x}
g(f(x))=15x815xg(f(x)) = -15 - x - 8\sqrt{-15-x}