We are given three functions: $f(x) = -9x$, $g(x) = 7x + 3$, and $h(x) = 6x^2 + 7x$. We need to evaluate the following composite functions: $f(g(x))$, $g(f(x))$, $g(g(x))$, and $h(f(x))$.

AlgebraFunction CompositionPolynomial Functions
2025/7/3

1. Problem Description

We are given three functions: f(x)=9xf(x) = -9x, g(x)=7x+3g(x) = 7x + 3, and h(x)=6x2+7xh(x) = 6x^2 + 7x. We need to evaluate the following composite functions: f(g(x))f(g(x)), g(f(x))g(f(x)), g(g(x))g(g(x)), and h(f(x))h(f(x)).

2. Solution Steps

a) Evaluate f(g(x))f(g(x)):
We need to substitute g(x)g(x) into f(x)f(x).
f(g(x))=f(7x+3)=9(7x+3)f(g(x)) = f(7x+3) = -9(7x+3)
f(g(x))=63x27f(g(x)) = -63x - 27
b) Evaluate g(f(x))g(f(x)):
We need to substitute f(x)f(x) into g(x)g(x).
g(f(x))=g(9x)=7(9x)+3g(f(x)) = g(-9x) = 7(-9x) + 3
g(f(x))=63x+3g(f(x)) = -63x + 3
c) Evaluate g(g(x))g(g(x)):
We need to substitute g(x)g(x) into g(x)g(x).
g(g(x))=g(7x+3)=7(7x+3)+3g(g(x)) = g(7x+3) = 7(7x+3) + 3
g(g(x))=49x+21+3g(g(x)) = 49x + 21 + 3
g(g(x))=49x+24g(g(x)) = 49x + 24
d) Evaluate h(f(x))h(f(x)):
We need to substitute f(x)f(x) into h(x)h(x).
h(f(x))=h(9x)=6(9x)2+7(9x)h(f(x)) = h(-9x) = 6(-9x)^2 + 7(-9x)
h(f(x))=6(81x2)63xh(f(x)) = 6(81x^2) - 63x
h(f(x))=486x263xh(f(x)) = 486x^2 - 63x

3. Final Answer

f(g(x))=63x27f(g(x)) = -63x - 27
g(f(x))=63x+3g(f(x)) = -63x + 3
g(g(x))=49x+24g(g(x)) = 49x + 24
h(f(x))=486x263xh(f(x)) = 486x^2 - 63x