We are given two functions, $f(x) = 2x^2 - 5x$ and $g(x) = 5x + 4$. We need to find the following composite functions: $f(g(x))$, $g(f(x))$, $f(f(x))$, and $g(g(x))$.

AlgebraFunctionsComposition of FunctionsPolynomials
2025/7/3

1. Problem Description

We are given two functions, f(x)=2x25xf(x) = 2x^2 - 5x and g(x)=5x+4g(x) = 5x + 4. We need to find the following composite functions: f(g(x))f(g(x)), g(f(x))g(f(x)), f(f(x))f(f(x)), and g(g(x))g(g(x)).

2. Solution Steps

(a) f(g(x))f(g(x))
We need to substitute g(x)g(x) into f(x)f(x).
f(g(x))=2(g(x))25(g(x))f(g(x)) = 2(g(x))^2 - 5(g(x))
f(g(x))=2(5x+4)25(5x+4)f(g(x)) = 2(5x+4)^2 - 5(5x+4)
f(g(x))=2(25x2+40x+16)25x20f(g(x)) = 2(25x^2 + 40x + 16) - 25x - 20
f(g(x))=50x2+80x+3225x20f(g(x)) = 50x^2 + 80x + 32 - 25x - 20
f(g(x))=50x2+55x+12f(g(x)) = 50x^2 + 55x + 12
(b) g(f(x))g(f(x))
We need to substitute f(x)f(x) into g(x)g(x).
g(f(x))=5(f(x))+4g(f(x)) = 5(f(x)) + 4
g(f(x))=5(2x25x)+4g(f(x)) = 5(2x^2 - 5x) + 4
g(f(x))=10x225x+4g(f(x)) = 10x^2 - 25x + 4
(c) f(f(x))f(f(x))
We need to substitute f(x)f(x) into f(x)f(x).
f(f(x))=2(f(x))25(f(x))f(f(x)) = 2(f(x))^2 - 5(f(x))
f(f(x))=2(2x25x)25(2x25x)f(f(x)) = 2(2x^2 - 5x)^2 - 5(2x^2 - 5x)
f(f(x))=2(4x420x3+25x2)10x2+25xf(f(x)) = 2(4x^4 - 20x^3 + 25x^2) - 10x^2 + 25x
f(f(x))=8x440x3+50x210x2+25xf(f(x)) = 8x^4 - 40x^3 + 50x^2 - 10x^2 + 25x
f(f(x))=8x440x3+40x2+25xf(f(x)) = 8x^4 - 40x^3 + 40x^2 + 25x
(d) g(g(x))g(g(x))
We need to substitute g(x)g(x) into g(x)g(x).
g(g(x))=5(g(x))+4g(g(x)) = 5(g(x)) + 4
g(g(x))=5(5x+4)+4g(g(x)) = 5(5x+4) + 4
g(g(x))=25x+20+4g(g(x)) = 25x + 20 + 4
g(g(x))=25x+24g(g(x)) = 25x + 24

3. Final Answer

(a) f(g(x))=50x2+55x+12f(g(x)) = 50x^2 + 55x + 12
(b) g(f(x))=10x225x+4g(f(x)) = 10x^2 - 25x + 4
(c) f(f(x))=8x440x3+40x2+25xf(f(x)) = 8x^4 - 40x^3 + 40x^2 + 25x
(d) g(g(x))=25x+24g(g(x)) = 25x + 24