The problem is to simplify the expression $5^{\frac{1}{4}} \times 5^{\frac{1}{3}} \div 5^{\frac{1}{12}}$.

AlgebraExponentsFractional ExponentsSimplification
2025/7/3

1. Problem Description

The problem is to simplify the expression 514×513÷51125^{\frac{1}{4}} \times 5^{\frac{1}{3}} \div 5^{\frac{1}{12}}.

2. Solution Steps

To solve this problem, we will use the properties of exponents.
When multiplying exponents with the same base, we add the exponents:
am×an=am+na^m \times a^n = a^{m+n}
When dividing exponents with the same base, we subtract the exponents:
am÷an=amna^m \div a^n = a^{m-n}
Applying these rules to the given expression:
514×513÷5112=514+131125^{\frac{1}{4}} \times 5^{\frac{1}{3}} \div 5^{\frac{1}{12}} = 5^{\frac{1}{4} + \frac{1}{3} - \frac{1}{12}}
First, we need to find a common denominator for the fractions 14\frac{1}{4}, 13\frac{1}{3}, and 112\frac{1}{12}. The least common denominator (LCD) of 4, 3, and 12 is
1

2. We convert each fraction to have a denominator of 12:

14=1×34×3=312\frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{3}{12}
13=1×43×4=412\frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12}
112\frac{1}{12} remains as 112\frac{1}{12}.
So, we have:
5312+412112=53+4112=56125^{\frac{3}{12} + \frac{4}{12} - \frac{1}{12}} = 5^{\frac{3+4-1}{12}} = 5^{\frac{6}{12}}
Now we simplify the fraction 612\frac{6}{12}:
612=12\frac{6}{12} = \frac{1}{2}
Therefore, the expression simplifies to:
5125^{\frac{1}{2}}

3. Final Answer

5125^{\frac{1}{2}}