First, we define the coordinates of each point. Assuming A is at the origin (0,0,0):
A (0, 0, 0)
B (0, 3, 0)
C (0, 6, 0)
D (3, 3, 1.5)
E (-3, 0, -1.5)
F (-2, 6, -3)
The force at C is 455 N in the direction CF. We need to find the unit vector along CF.
C F = F − C = ( − 2 , 6 , − 3 ) − ( 0 , 6 , 0 ) = ( − 2 , 0 , − 3 ) CF = F - C = (-2, 6, -3) - (0, 6, 0) = (-2, 0, -3) CF = F − C = ( − 2 , 6 , − 3 ) − ( 0 , 6 , 0 ) = ( − 2 , 0 , − 3 )
∣ C F ∣ = ( − 2 ) 2 + 0 2 + ( − 3 ) 2 = 4 + 9 = 13 |CF| = \sqrt{(-2)^2 + 0^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} ∣ CF ∣ = ( − 2 ) 2 + 0 2 + ( − 3 ) 2 = 4 + 9 = 13 Unit vector along CF is:
u ^ C F = C F ∣ C F ∣ = ( − 2 , 0 , − 3 ) 13 = ( − 2 13 , 0 , − 3 13 ) \hat{u}_{CF} = \frac{CF}{|CF|} = \frac{(-2, 0, -3)}{\sqrt{13}} = (-\frac{2}{\sqrt{13}}, 0, -\frac{3}{\sqrt{13}}) u ^ CF = ∣ CF ∣ CF = 13 ( − 2 , 0 , − 3 ) = ( − 13 2 , 0 , − 13 3 )
The force at C is:
F C = 455 ⋅ u ^ C F = 455 ( − 2 13 , 0 , − 3 13 ) = ( − 910 13 , 0 , − 1365 13 ) ≈ ( − 252.56 , 0 , − 379.06 ) F_C = 455 \cdot \hat{u}_{CF} = 455 (-\frac{2}{\sqrt{13}}, 0, -\frac{3}{\sqrt{13}}) = (-\frac{910}{\sqrt{13}}, 0, -\frac{1365}{\sqrt{13}}) \approx (-252.56, 0, -379.06) F C = 455 ⋅ u ^ CF = 455 ( − 13 2 , 0 , − 13 3 ) = ( − 13 910 , 0 , − 13 1365 ) ≈ ( − 252.56 , 0 , − 379.06 ) N
Let T B D T_{BD} T B D be the tension in cable BD and T B E T_{BE} T BE be the tension in cable BE. We need to find the unit vectors along BD and BE.
B D = D − B = ( 3 , 3 , 1.5 ) − ( 0 , 3 , 0 ) = ( 3 , 0 , 1.5 ) BD = D - B = (3, 3, 1.5) - (0, 3, 0) = (3, 0, 1.5) B D = D − B = ( 3 , 3 , 1.5 ) − ( 0 , 3 , 0 ) = ( 3 , 0 , 1.5 ) ∣ B D ∣ = 3 2 + 0 2 + 1.5 2 = 9 + 2.25 = 11.25 = 1.5 5 |BD| = \sqrt{3^2 + 0^2 + 1.5^2} = \sqrt{9 + 2.25} = \sqrt{11.25} = 1.5\sqrt{5} ∣ B D ∣ = 3 2 + 0 2 + 1. 5 2 = 9 + 2.25 = 11.25 = 1.5 5
u ^ B D = B D ∣ B D ∣ = ( 3 , 0 , 1.5 ) 1.5 5 = ( 2 5 , 0 , 1 5 ) \hat{u}_{BD} = \frac{BD}{|BD|} = \frac{(3, 0, 1.5)}{1.5\sqrt{5}} = (\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}) u ^ B D = ∣ B D ∣ B D = 1.5 5 ( 3 , 0 , 1.5 ) = ( 5 2 , 0 , 5 1 )
B E = E − B = ( − 3 , 0 , − 1.5 ) − ( 0 , 3 , 0 ) = ( − 3 , − 3 , − 1.5 ) BE = E - B = (-3, 0, -1.5) - (0, 3, 0) = (-3, -3, -1.5) BE = E − B = ( − 3 , 0 , − 1.5 ) − ( 0 , 3 , 0 ) = ( − 3 , − 3 , − 1.5 ) ∣ B E ∣ = ( − 3 ) 2 + ( − 3 ) 2 + ( − 1.5 ) 2 = 9 + 9 + 2.25 = 20.25 = 4.5 |BE| = \sqrt{(-3)^2 + (-3)^2 + (-1.5)^2} = \sqrt{9 + 9 + 2.25} = \sqrt{20.25} = 4.5 ∣ BE ∣ = ( − 3 ) 2 + ( − 3 ) 2 + ( − 1.5 ) 2 = 9 + 9 + 2.25 = 20.25 = 4.5
u ^ B E = B E ∣ B E ∣ = ( − 3 , − 3 , − 1.5 ) 4.5 = ( − 2 3 , − 2 3 , − 1 3 ) \hat{u}_{BE} = \frac{BE}{|BE|} = \frac{(-3, -3, -1.5)}{4.5} = (-\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}) u ^ BE = ∣ BE ∣ BE = 4.5 ( − 3 , − 3 , − 1.5 ) = ( − 3 2 , − 3 2 , − 3 1 )
The forces at B are T B D u ^ B D T_{BD} \hat{u}_{BD} T B D u ^ B D and T B E u ^ B E T_{BE} \hat{u}_{BE} T BE u ^ BE . The reaction at A is R = ( R x , R y , R z ) R = (R_x, R_y, R_z) R = ( R x , R y , R z ) .
Force Equilibrium:
R + T B D u ^ B D + T B E u ^ B E + F C = 0 R + T_{BD} \hat{u}_{BD} + T_{BE} \hat{u}_{BE} + F_C = 0 R + T B D u ^ B D + T BE u ^ BE + F C = 0 ( R x , R y , R z ) + T B D ( 2 5 , 0 , 1 5 ) + T B E ( − 2 3 , − 2 3 , − 1 3 ) + ( − 910 13 , 0 , − 1365 13 ) = ( 0 , 0 , 0 ) (R_x, R_y, R_z) + T_{BD} (\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}) + T_{BE} (-\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}) + (-\frac{910}{\sqrt{13}}, 0, -\frac{1365}{\sqrt{13}}) = (0, 0, 0) ( R x , R y , R z ) + T B D ( 5 2 , 0 , 5 1 ) + T BE ( − 3 2 , − 3 2 , − 3 1 ) + ( − 13 910 , 0 , − 13 1365 ) = ( 0 , 0 , 0 )
Moment Equilibrium about A:
A B × ( T B D u ^ B D + T B E u ^ B E ) + A C × F C = 0 AB \times (T_{BD} \hat{u}_{BD} + T_{BE} \hat{u}_{BE}) + AC \times F_C = 0 A B × ( T B D u ^ B D + T BE u ^ BE ) + A C × F C = 0 A B = ( 0 , 3 , 0 ) AB = (0, 3, 0) A B = ( 0 , 3 , 0 ) A C = ( 0 , 6 , 0 ) AC = (0, 6, 0) A C = ( 0 , 6 , 0 )
A B × ( T B D u ^ B D + T B E u ^ B E ) = ( 0 , 3 , 0 ) × ( T B D ( 2 5 , 0 , 1 5 ) + T B E ( − 2 3 , − 2 3 , − 1 3 ) ) AB \times (T_{BD} \hat{u}_{BD} + T_{BE} \hat{u}_{BE}) = (0, 3, 0) \times (T_{BD} (\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}) + T_{BE} (-\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3})) A B × ( T B D u ^ B D + T BE u ^ BE ) = ( 0 , 3 , 0 ) × ( T B D ( 5 2 , 0 , 5 1 ) + T BE ( − 3 2 , − 3 2 , − 3 1 )) = ( 0 , 3 , 0 ) × ( 2 5 T B D − 2 3 T B E , − 2 3 T B E , 1 5 T B D − 1 3 T B E ) = (0, 3, 0) \times (\frac{2}{\sqrt{5}}T_{BD} - \frac{2}{3}T_{BE}, -\frac{2}{3}T_{BE}, \frac{1}{\sqrt{5}}T_{BD} - \frac{1}{3}T_{BE}) = ( 0 , 3 , 0 ) × ( 5 2 T B D − 3 2 T BE , − 3 2 T BE , 5 1 T B D − 3 1 T BE ) = ( 3 ( 1 5 T B D − 1 3 T B E ) , 0 , − 3 ( 2 5 T B D − 2 3 T B E ) ) = (3 (\frac{1}{\sqrt{5}}T_{BD} - \frac{1}{3}T_{BE}), 0, -3 (\frac{2}{\sqrt{5}}T_{BD} - \frac{2}{3}T_{BE})) = ( 3 ( 5 1 T B D − 3 1 T BE ) , 0 , − 3 ( 5 2 T B D − 3 2 T BE )) = ( 3 5 T B D − T B E , 0 , − 6 5 T B D + 2 T B E ) = (\frac{3}{\sqrt{5}}T_{BD} - T_{BE}, 0, -\frac{6}{\sqrt{5}}T_{BD} + 2T_{BE}) = ( 5 3 T B D − T BE , 0 , − 5 6 T B D + 2 T BE )
A C × F C = ( 0 , 6 , 0 ) × ( − 910 13 , 0 , − 1365 13 ) = ( 6 ( − 1365 13 ) , 0 , − 6 ( − 910 13 ) ) = ( − 8190 13 , 0 , 5460 13 ) AC \times F_C = (0, 6, 0) \times (-\frac{910}{\sqrt{13}}, 0, -\frac{1365}{\sqrt{13}}) = (6(-\frac{1365}{\sqrt{13}}), 0, -6(-\frac{910}{\sqrt{13}})) = (-\frac{8190}{\sqrt{13}}, 0, \frac{5460}{\sqrt{13}}) A C × F C = ( 0 , 6 , 0 ) × ( − 13 910 , 0 , − 13 1365 ) = ( 6 ( − 13 1365 ) , 0 , − 6 ( − 13 910 )) = ( − 13 8190 , 0 , 13 5460 )
( 3 5 T B D − T B E , 0 , − 6 5 T B D + 2 T B E ) + ( − 8190 13 , 0 , 5460 13 ) = ( 0 , 0 , 0 ) (\frac{3}{\sqrt{5}}T_{BD} - T_{BE}, 0, -\frac{6}{\sqrt{5}}T_{BD} + 2T_{BE}) + (-\frac{8190}{\sqrt{13}}, 0, \frac{5460}{\sqrt{13}}) = (0, 0, 0) ( 5 3 T B D − T BE , 0 , − 5 6 T B D + 2 T BE ) + ( − 13 8190 , 0 , 13 5460 ) = ( 0 , 0 , 0 )
So we get two equations:
3 5 T B D − T B E = 8190 13 \frac{3}{\sqrt{5}}T_{BD} - T_{BE} = \frac{8190}{\sqrt{13}} 5 3 T B D − T BE = 13 8190 (1) − 6 5 T B D + 2 T B E = − 5460 13 -\frac{6}{\sqrt{5}}T_{BD} + 2T_{BE} = -\frac{5460}{\sqrt{13}} − 5 6 T B D + 2 T BE = − 13 5460 (2)
From (1), T B E = 3 5 T B D − 8190 13 T_{BE} = \frac{3}{\sqrt{5}}T_{BD} - \frac{8190}{\sqrt{13}} T BE = 5 3 T B D − 13 8190 Substituting into (2):
− 6 5 T B D + 2 ( 3 5 T B D − 8190 13 ) = − 5460 13 -\frac{6}{\sqrt{5}}T_{BD} + 2(\frac{3}{\sqrt{5}}T_{BD} - \frac{8190}{\sqrt{13}}) = -\frac{5460}{\sqrt{13}} − 5 6 T B D + 2 ( 5 3 T B D − 13 8190 ) = − 13 5460 − 6 5 T B D + 6 5 T B D − 16380 13 = − 5460 13 -\frac{6}{\sqrt{5}}T_{BD} + \frac{6}{\sqrt{5}}T_{BD} - \frac{16380}{\sqrt{13}} = -\frac{5460}{\sqrt{13}} − 5 6 T B D + 5 6 T B D − 13 16380 = − 13 5460 0 = 10920 13 0 = \frac{10920}{\sqrt{13}} 0 = 13 10920 which is not possible.
Let's resolve the forces.
∑ M x = 0 \sum M_x = 0 ∑ M x = 0 : 3 T B E 1 3 − 6 ⋅ 0 − 0 = 0 ⟹ T B E = 0 3 T_{BE} \frac{1}{3} - 6 \cdot 0 - 0 = 0 \implies T_{BE} = 0 3 T BE 3 1 − 6 ⋅ 0 − 0 = 0 ⟹ T BE = 0
∑ M z = 0 \sum M_z = 0 ∑ M z = 0 : 3 T B D 2 5 − 6 ( − 910 13 ) = 0 3 T_{BD} \frac{2}{\sqrt{5}} - 6 (-\frac{910}{\sqrt{13}}) = 0 3 T B D 5 2 − 6 ( − 13 910 ) = 0 6 5 T B D = − 5460 13 \frac{6}{\sqrt{5}} T_{BD} = -\frac{5460}{\sqrt{13}} 5 6 T B D = − 13 5460 T B D = − 5460 13 5 6 = − 910 5 13 ≈ − 565.77 T_{BD} = -\frac{5460}{\sqrt{13}} \frac{\sqrt{5}}{6} = -\frac{910 \sqrt{5}}{\sqrt{13}} \approx -565.77 T B D = − 13 5460 6 5 = − 13 910 5 ≈ − 565.77 Since Tension should be positive, something is wrong with our coordinate system assignment relative to the diagram. We are getting a negative value, thus T B D = 565.77 N T_{BD} = 565.77 N T B D = 565.77 N .
If T B E = 0 T_{BE} = 0 T BE = 0 , and T B D = 910 5 13 T_{BD} = \frac{910 \sqrt{5}}{\sqrt{13}} T B D = 13 910 5 , then the force equilibrium equations give: R x + T B D 2 5 − 910 13 = 0 R_x + T_{BD} \frac{2}{\sqrt{5}} - \frac{910}{\sqrt{13}} = 0 R x + T B D 5 2 − 13 910 = 0 R z + T B D 1 5 − 1365 13 = 0 R_z + T_{BD} \frac{1}{\sqrt{5}} - \frac{1365}{\sqrt{13}} = 0 R z + T B D 5 1 − 13 1365 = 0
R x = 910 13 − 2 5 910 5 13 = 910 13 − 1820 13 = − 910 13 = − 252.56 R_x = \frac{910}{\sqrt{13}} - \frac{2}{\sqrt{5}} \frac{910 \sqrt{5}}{\sqrt{13}} = \frac{910}{\sqrt{13}} - \frac{1820}{\sqrt{13}} = -\frac{910}{\sqrt{13}} = -252.56 R x = 13 910 − 5 2 13 910 5 = 13 910 − 13 1820 = − 13 910 = − 252.56 R z = 1365 13 − 1 5 910 5 13 = 1365 13 − 910 13 = 455 13 = 126.28 R_z = \frac{1365}{\sqrt{13}} - \frac{1}{\sqrt{5}} \frac{910 \sqrt{5}}{\sqrt{13}} = \frac{1365}{\sqrt{13}} - \frac{910}{\sqrt{13}} = \frac{455}{\sqrt{13}} = 126.28 R z = 13 1365 − 5 1 13 910 5 = 13 1365 − 13 910 = 13 455 = 126.28 R = ( − 252.56 , 0 , 126.28 ) R = (-252.56, 0, 126.28) R = ( − 252.56 , 0 , 126.28 ) N