RB∗2+RC∗6−10∗4−2∗6=0 2RB+6RC=40+12 2RB+6RC=52 RB+3RC=26 (Equation 2) Solving equations (1) and (2) for RA and RC in terms of RB: From Equation 2:
3RC=26−RB RC=326−RB Substitute this into Equation 1:
RA+RB+326−RB=12 3RA+3RB+26−RB=36 3RA+2RB=10 RA=310−2RB Now we need to find the bending moment equations for the two sections of the beam (AB and BC).
Section AB (0≤x≤2): M1=RA∗x=310−2RBx Section BC (0≤x≤4): We measure x from point B to point C. M2=RC∗x=326−RBx However, we need to include the 2kN force from the original support, which is located 2m from support C, resulting in a range of 0<x<2 and 2<x<4. Therefore, we have: When 0≤x≤2: M2=RC∗x=326−RBx When 2<x≤4: M3=RC∗x−2(x−2)=326−RBx−2x+4 Now apply Castigliano's Theorem:
∂RB∂U=∫0LEIM∂RB∂Mdx=0 We assume EI is constant, thus:
∫0LM∂RB∂Mdx=0 We have three integrals to evaluate:
∫02M1∂RB∂M1dx+∫02M2∂RB∂M2dx+∫24M3∂RB∂M3dx=0 Calculate the partial derivatives with respect to RB: ∂RB∂M1=∂RB∂(310−2RBx)=−32x ∂RB∂M2=∂RB∂(326−RBx)=−3x ∂RB∂M3=∂RB∂(326−RBx−2x+4)=−3x Now, we solve the integrals.
∫02(310−2RBx)(−32x)dx+∫02(326−RBx)(−3x)dx+∫24(326−RBx−2x+4)(−3x)dx=0 −92∫02(10−2RB)x2dx−91∫02(26−RB)x2dx−91∫24(326−RBx2−2x2+4x)dx=0 −92(10−2RB)[3x3]02−91(26−RB)[3x3]02−91[926−RBx3−32x3+2x2]24=0 −92(10−2RB)(38)−91(26−RB)(38)−91[(926−RB)(64−8)−32(64−8)+2(16−4)]=0 Multiply by -9 to remove negative values and simplify:
316(10−2RB)+38(26−RB)+(926−RB(56)−32(56)+2(12))=0 3160−332RB+3208−38RB+91456−956RB−3112+24=0 Multiply by 9 to get rid of fractions:
480−96RB+624−24RB+1456−56RB−336+216=0 2480−176RB=0 176RB=2480 RB=1762480=22310=11155≈14.09