First, recognize that the beam is statically indeterminate to the first degree. We will consider the reaction at B, RB, as the redundant reaction. According to Castigliano's theorem, the deflection at the support B is given by:
ΔB=∂RB∂U=0 Where U is the strain energy of the beam. The strain energy due to bending is given by:
U=∫2EIM2dx Therefore,
∂RB∂U=∫EIM∂RB∂Mdx=0 We need to find the bending moment M as a function of x and RB for different sections of the beam. Let RA and RC be the vertical reactions at A and C, respectively. From the equilibrium equations:
ΣFy=0: RA+RB+RC−10−2∗4=0 RA+RB+RC=18 ΣMA=0: 10(4)+2(4)(4+2+4/2)−RB(4+2)−RC(4+2+4)=0 40+48−6RB−10RC=0 6RB+10RC=88 3RB+5RC=44 Now, we will express RA and RC in terms of RB: 5RA+5RB+5RC=90 5RA=90−5RB−5RC 5RA=90−5RB−(44−3RB) 5RA=46−2RB RA=9.2−0.4RB 5RC=44−3RB RC=8.8−0.6RB Now we analyze different sections:
Section 1: 0≤x≤4 (from A to 10kN force) M1(x)=RA∗x=(9.2−0.4RB)x ∂RB∂M1=−0.4x Section 2: 4≤x≤6 (from 10kN force to B) M2(x)=RA∗x−10(x−4)=(9.2−0.4RB)x−10(x−4)=(9.2−0.4RB−10)x+40=(−0.8−0.4RB)x+40 ∂RB∂M2=−0.4x Section 3: 6≤x≤10 (from B to C) M3(x)=RC(10−x)+22∗(10−x)2=(8.8−0.6RB)(10−x)+(10−x)2 M3(x)=(8.8−0.6RB)(10−x)+(100−20x+x2) ∂RB∂M3=−0.6(10−x) ∫04EIM1∂RB∂M1dx+∫46EIM2∂RB∂M2dx+∫610EIM3∂RB∂M3dx=0 Since EI is constant, ∫04M1∂RB∂M1dx+∫46M2∂RB∂M2dx+∫610M3∂RB∂M3dx=0 ∫04(9.2−0.4RB)x(−0.4x)dx+∫46((−0.8−0.4RB)x+40)(−0.4x)dx+∫610((8.8−0.6RB)(10−x)+(10−x)2)(−0.6(10−x))dx=0 ∫04(−3.68x2+0.16RBx2)dx+∫46(0.32x2+0.16RBx2−16x)dx+∫610(−5.28(10−x)2+0.36RB(10−x)2−0.6(10−x)3)dx=0 [−3.68x3/3+0.16RBx3/3]04+[0.32x3/3+0.16RBx3/3−8x2]46+[−5.28(10−x)3/3+0.36RB(10−x)3/3+0.6(10−x)4/4]610=0 [−3.68(64)/3+0.16RB(64)/3]+[0.32(216)/3+0.16RB(216)/3−8(36)−(0.32(64)/3+0.16RB(64)/3−8(16))]+[0−(−5.28(64)/3+0.36RB(64)/3+0.6(256)/4)]=0 −78.61+3.41RB+[23.04+11.52RB−288−(6.83+3.41RB−128)]+[5.28(64)/3−0.36RB(64)/3−0.6(256)/4]=0 −78.61+3.41RB+23.04+11.52RB−288−6.83−3.41RB+128+112.64−7.68RB−38.4=0 −78.61+23.04−288−6.83+128+112.64−38.4+(3.41+11.52−3.41−7.68)RB=0 −148.16+3.84RB=0 RB=148.16/3.84=38.58