Simplify the expression $\frac{2x^3y^{-4}}{2yx^4 \cdot 2x^{-4}y^{-1}}$.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/4/3

1. Problem Description

Simplify the expression 2x3y42yx42x4y1\frac{2x^3y^{-4}}{2yx^4 \cdot 2x^{-4}y^{-1}}.

2. Solution Steps

First, simplify the denominator by multiplying the terms:
2yx42x4y1=22x4x4yy1=4x4+(4)y1+(1)=4x0y0=4(1)(1)=42yx^4 \cdot 2x^{-4}y^{-1} = 2 \cdot 2 \cdot x^4 \cdot x^{-4} \cdot y \cdot y^{-1} = 4x^{4+(-4)}y^{1+(-1)} = 4x^0y^0 = 4(1)(1) = 4.
So the expression becomes:
2x3y44\frac{2x^3y^{-4}}{4}.
Now, we can simplify the fraction by dividing the coefficient:
2x3y44=12x3y4\frac{2x^3y^{-4}}{4} = \frac{1}{2}x^3y^{-4}.
We can write the expression without negative exponents:
12x3y4=x32y4\frac{1}{2}x^3y^{-4} = \frac{x^3}{2y^4}.

3. Final Answer

x32y4\frac{x^3}{2y^4}