Simplify the given expression: $\frac{mn^2 \cdot m^4}{2m^2}$.

AlgebraAlgebraic ExpressionsExponentsSimplification
2025/4/3

1. Problem Description

Simplify the given expression: mn2m42m2\frac{mn^2 \cdot m^4}{2m^2}.

2. Solution Steps

First, simplify the numerator by combining the mm terms using the rule aman=am+na^m \cdot a^n = a^{m+n}:
mn2m4=m1m4n2=m1+4n2=m5n2mn^2 \cdot m^4 = m^1 \cdot m^4 \cdot n^2 = m^{1+4}n^2 = m^5n^2
So the expression becomes m5n22m2\frac{m^5n^2}{2m^2}.
Next, simplify the expression by dividing m5m^5 by m2m^2 using the rule aman=amn\frac{a^m}{a^n} = a^{m-n}:
m5m2=m52=m3\frac{m^5}{m^2} = m^{5-2} = m^3
Thus, the simplified expression is m3n22\frac{m^3n^2}{2}.

3. Final Answer

m3n22\frac{m^3n^2}{2}