The problem asks us to choose the THREE expressions that are equivalent to the factorization $(2x + 3)(2x - 5)$.

AlgebraFactoringPolynomialsAlgebraic ExpressionsExpanding ExpressionsEquivalence
2025/4/3

1. Problem Description

The problem asks us to choose the THREE expressions that are equivalent to the factorization (2x+3)(2x5)(2x + 3)(2x - 5).

2. Solution Steps

First, expand the expression (2x+3)(2x5)(2x + 3)(2x - 5):
(2x+3)(2x5)=2x(2x5)+3(2x5)=4x210x+6x15=4x24x15(2x + 3)(2x - 5) = 2x(2x - 5) + 3(2x - 5) = 4x^2 - 10x + 6x - 15 = 4x^2 - 4x - 15.
Now, we need to check each of the five given expressions to see if they are equivalent to 4x24x154x^2 - 4x - 15.
a) 4x2+6x5(2x+3)=4x2+6x10x15=4x24x154x^2 + 6x - 5(2x + 3) = 4x^2 + 6x - 10x - 15 = 4x^2 - 4x - 15.
This expression is equivalent to (2x+3)(2x5)(2x + 3)(2x - 5).
b) 4x210x+3(2x5)=4x210x+6x15=4x24x154x^2 - 10x + 3(2x - 5) = 4x^2 - 10x + 6x - 15 = 4x^2 - 4x - 15.
This expression is equivalent to (2x+3)(2x5)(2x + 3)(2x - 5).
c) 4x2+6x+5(2x+3)=4x2+6x+10x+15=4x2+16x+154x^2 + 6x + 5(2x + 3) = 4x^2 + 6x + 10x + 15 = 4x^2 + 16x + 15.
This expression is not equivalent to (2x+3)(2x5)(2x + 3)(2x - 5).
d) 2x(2x+3)5(2x3)=4x2+6x10x+15=4x24x+152x(2x + 3) - 5(2x - 3) = 4x^2 + 6x - 10x + 15 = 4x^2 - 4x + 15.
This expression is not equivalent to (2x+3)(2x5)(2x + 3)(2x - 5).
e) 2x(2x+3)10x15=4x2+6x10x15=4x24x152x(2x + 3) - 10x - 15 = 4x^2 + 6x - 10x - 15 = 4x^2 - 4x - 15.
This expression is equivalent to (2x+3)(2x5)(2x + 3)(2x - 5).

3. Final Answer

The three expressions that result in the factorization (2x+3)(2x5)(2x + 3)(2x - 5) are:
4x2+6x5(2x+3)4x^2 + 6x - 5(2x + 3)
4x210x+3(2x5)4x^2 - 10x + 3(2x - 5)
2x(2x+3)10x152x(2x+3) - 10x - 15