The problem asks to evaluate four expressions using properties of logarithms. The expressions are: 1) $e^{\ln(14) + \ln(10)}$ 2) $10^{\log(14) - \log(2)}$ 3) $11^{\log_{11}(15-12)}$ 4) $12^{13\cdot \log_{12}(2)}$

AlgebraLogarithmsExponentsProperties of Logarithms
2025/4/3

1. Problem Description

The problem asks to evaluate four expressions using properties of logarithms. The expressions are:
1) eln(14)+ln(10)e^{\ln(14) + \ln(10)}
2) 10log(14)log(2)10^{\log(14) - \log(2)}
3) 11log11(1512)11^{\log_{11}(15-12)}
4) 1213log12(2)12^{13\cdot \log_{12}(2)}

2. Solution Steps

1) eln(14)+ln(10)e^{\ln(14) + \ln(10)}
Using the logarithm property ln(a)+ln(b)=ln(ab)\ln(a) + \ln(b) = \ln(ab), we have
eln(14)+ln(10)=eln(1410)=eln(140)e^{\ln(14) + \ln(10)} = e^{\ln(14 \cdot 10)} = e^{\ln(140)}
Since eln(x)=xe^{\ln(x)} = x, we have
eln(140)=140e^{\ln(140)} = 140
2) 10log(14)log(2)10^{\log(14) - \log(2)}
Using the logarithm property log(a)log(b)=log(ab)\log(a) - \log(b) = \log(\frac{a}{b}), we have
10log(14)log(2)=10log(142)=10log(7)10^{\log(14) - \log(2)} = 10^{\log(\frac{14}{2})} = 10^{\log(7)}
Since 10log(x)=x10^{\log(x)} = x, we have
10log(7)=710^{\log(7)} = 7
3) 11log11(1512)11^{\log_{11}(15-12)}
First simplify the inside of parenthesis to get 1512=315 - 12 = 3
11log11(1512)=11log11(3)11^{\log_{11}(15-12)} = 11^{\log_{11}(3)}
Since aloga(x)=xa^{\log_a(x)} = x, we have
11log11(3)=311^{\log_{11}(3)} = 3
4) 1213log12(2)12^{13\cdot \log_{12}(2)}
Using the logarithm property alogb(c)=logb(ca)a \cdot \log_b(c) = \log_b(c^a), we have
1213log12(2)=12log12(213)12^{13\cdot \log_{12}(2)} = 12^{\log_{12}(2^{13})}
Since aloga(x)=xa^{\log_a(x)} = x, we have
12log12(213)=213=819212^{\log_{12}(2^{13})} = 2^{13} = 8192

3. Final Answer

1) eln(14)+ln(10)=140e^{\ln(14) + \ln(10)} = 140
2) 10log(14)log(2)=710^{\log(14) - \log(2)} = 7
3) 11log11(1512)=311^{\log_{11}(15-12)} = 3
4) 1213log12(2)=819212^{13\cdot \log_{12}(2)} = 8192